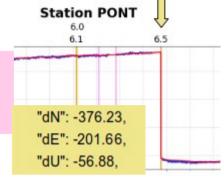

GNSS processing at Université-Grenoble-Alpes for EPOS-GNSS

EUREF Symposium

June 24th 2025

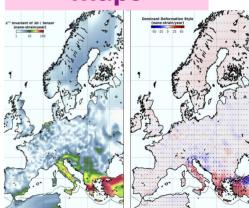
Gaël Janex, Anne Socquet, Aubin Tsapong-Tsague, Oliver Henriot




EPOS GNSS products?

Daily / Weekly **Positions**

Daily / Weekly **Position Time Series**


Position Offsets

Secular velocities

Strain rate maps

What are the different products labels? What are their specificities?

EPOS, EUREF, EUREF-EPOS

Two product solutions developed specifically for EPOS

Principles:

- Open science, reproducible
 - All data available: RInEx from EPOS-GNSS Data Gateway, metadata available & verified
 - Fully documented processing strategies using scientific software
- Specifically designed for geophysical studies (including for slow movements)
 - Each solution is internally-consistent, generated @ a single Pan-European processing center with one strategy

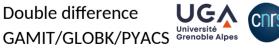
Positions

Time Series

Velocities

Quality

Check


Daily positions & Multi-year solutions

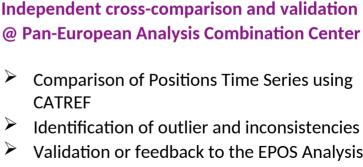
@ 2 Pan-European EPOS Analysis Centers 2 x

Automatic updates @ D-2 & D-25

- Two independent daily solutions:
 - generated @ 2 independent processing centers
 - with 2 independent processing Strategies & Softwares:

Double difference

GIPSY-OASIS-II


PPP

Regular Updates

Velocities Computed with MIDAS, station classification based on uncertainty

- Comparison of Positions Time Series using **CATRFF**
- Identification of outlier and inconsistencies
- Validation or feedback to the EPOS Analysis Centers

What are the different products labels? What are their specificities?

EPOS, EUREF, EUREF-EPOS

eurst

Original EUREF product made available through the EPOS GNSS Product Gateway

Principles:

- **Open data:** RInEx available from EPN data centers, metadata available & verified
- Specifically designed for geodesy and reference frame studies:
 - Geodetic-class stations from the EUREF Permanent Network (EPN)
 - Densifies ITRF over Europe and provides access to European Terrestrial Reference Frame (ETRF/ETRS89)

Regional daily position solution

@ 16 EPN Analysis Centers

- each station processed by at least 3 ACs to ensure redundancy and increase reliability
- 3 softwares: Bernese, Gamit, Gipsy

Daily and Weekly Combined Positions

- @ EPN Analysis Combination Center **Positions**
- Pan-European combinations with Bernese
- Each AC solution is compared to the combined solution to identify and reject outliers
- Aligned to IGS14 using no-net-translation

Multi-year Solution

@ EPN Reference Frame Analysis Center

Time Series

Velocities

- Updated each 15 weeks
- Using CATREF
- Outlier rejection by visual inspection of time series, introduction of position and velocity discontinuities, station classification based on velocity uncertainties from Hector and velocity variability

What are the different products labels? What are their specificities?

EPOS, EUREF, EUREF-EPOS

Densification Product from EUREF and EPOS

Principles:

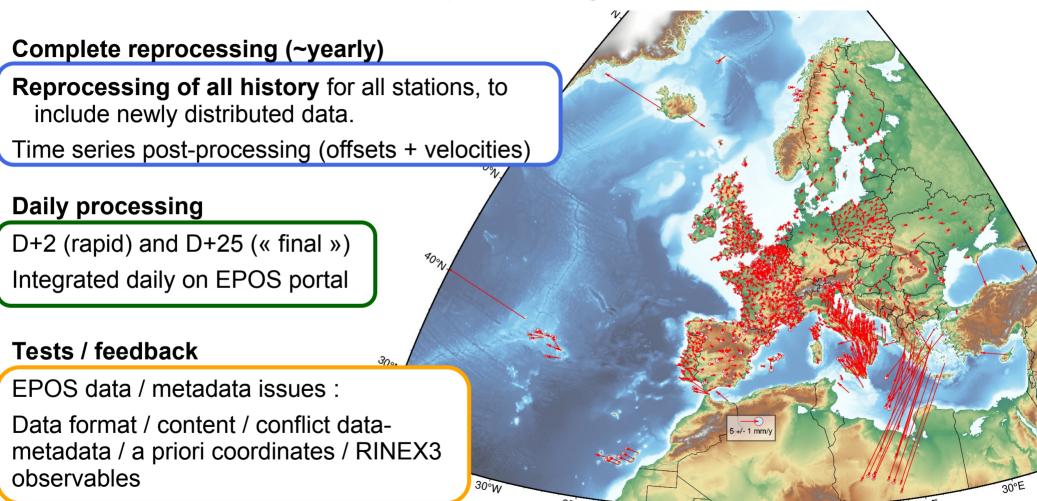
Provide a densified velocity field, including non-EPOS stations that do not release raw data (yet?)

Regional daily position solution

@ 30 EPND & EPOS Analysis Centers

Multi-year Combined Solution @ EPOS-EUREF Combination Center

Velocities


Time Series

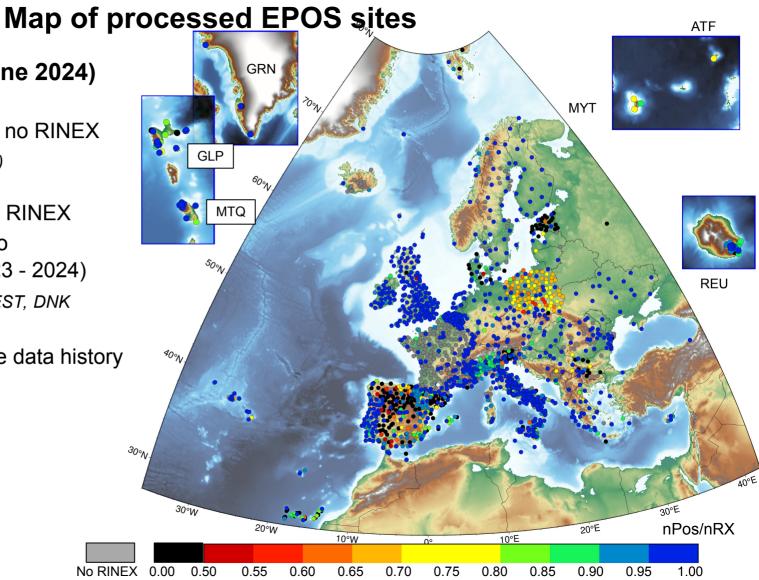
- Weekly Combined Positions Time Series using CATREF
- Velocities using CATREF, MIDAS, HECTOR
- Station metadata harmonization
- Outlier rejection by automated and visual inspection of time series, introduction of position and velocity discontinuities, velocity filtering, removal of non-representative stations (data quality or monumentation)

Double-difference processing at UGA-CNRS

UGA GG/midas velocity solution – IGb14 Eurasia - June 2024

Stats from last repro (June 2024)

Sites with site log but no RINEX
 Mainly TERIA (FRA)


Sites with most/many RINEX

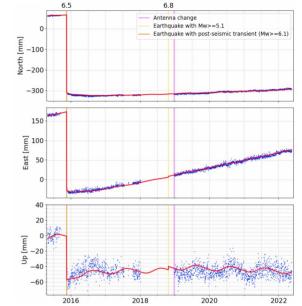
added during repro

(end 2023 - 2024)

Mainly ESP, POL, EST, DNK

Older sites with stable data history

GNSS offset product for Geo-INQUIRE – first release mid-2024


For all time series, estimate position offsets:

Equipment offsets for changes listed in site log

Co-seismic offsets

Post-seismic relaxation modelled, not delivered

(EQ / location-dependent)

Status:

Covers 95% of sites (1543 / 1621 TS)

Remaining sites: local phenomena or short/incomplete time series

Json format for more flexibility

Format discussed and adjusted with INGV

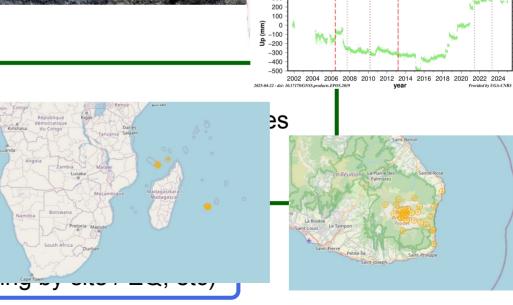
Next:

Work with portals on improved service (filtering by site / EQ, etc)

GNSS offset product for Geo-INQUIRE – first release mid-2024

Status:

Covers 95% of sites (1543 / 1621 TS)

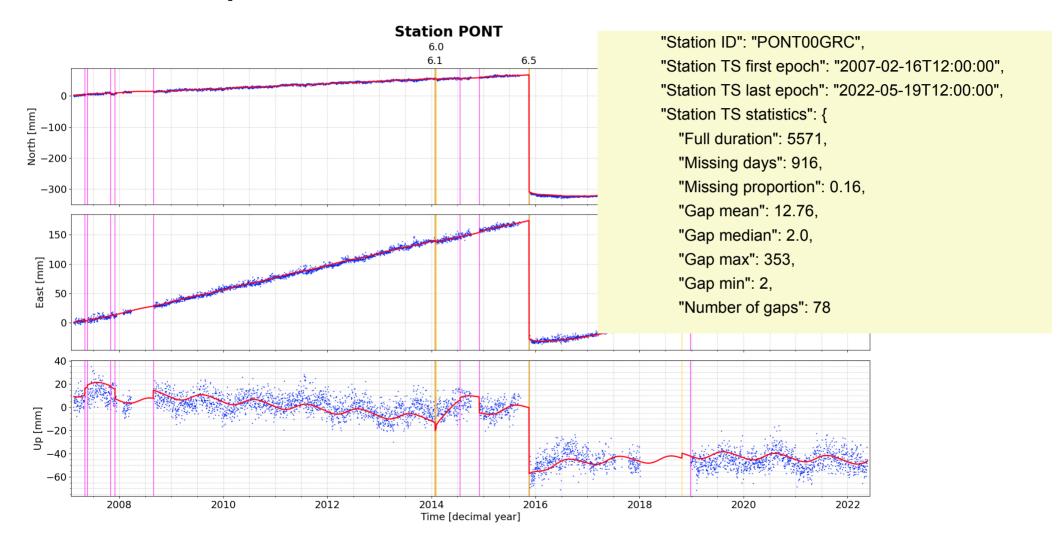

Remaining sites : <u>local phenomena</u> o

Json format for more flexibility

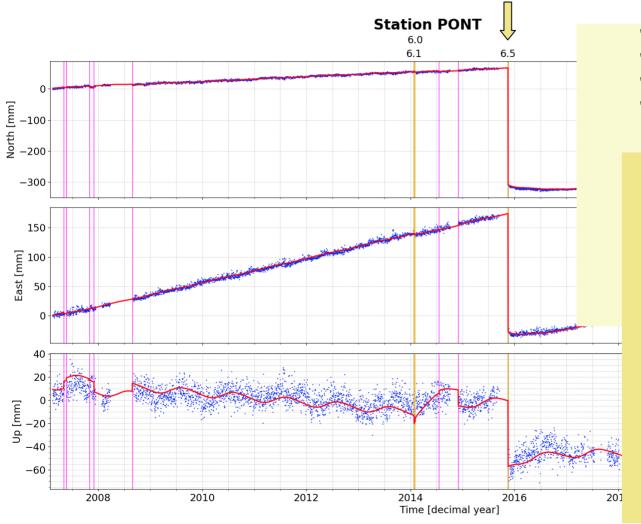
Format discussed and adjusted with ING\

Next:

Work with portals on improved service (filt-

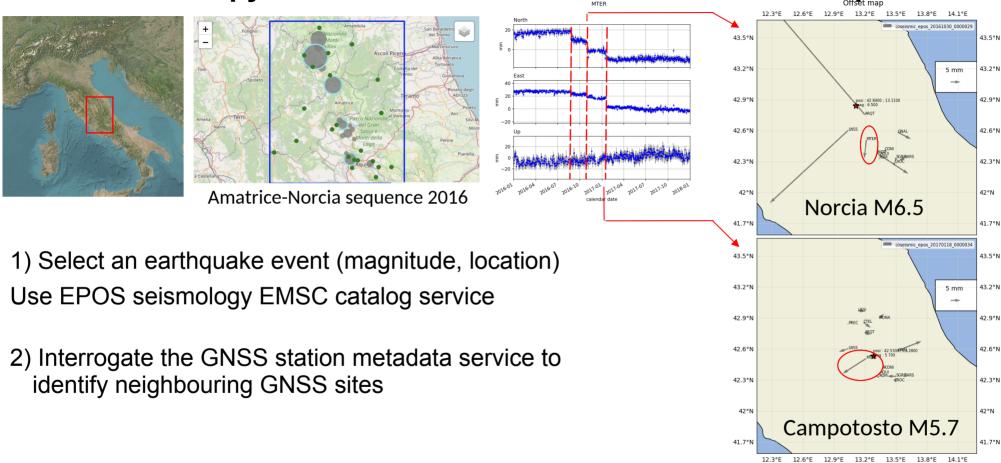


100


2006 2008 2010 2012 2014 2016 2018 2020 2022 202

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

GNSS offset product for Geo-INQUIRE



GNSS offset product for Geo-INQUIRE


```
"Station ID": "PONT00GRC",
"Station TS first epoch": "2007-02-16T12:00:00",
"Station TS last epoch": "2022-05-19T12:00:00",
"Station TS statistics": {
  "Full duration": 5571,
 "DateTimeOffsetEstimate": "2015-11-17T07:10:00",
 "dN": -376.23.
 "dE": -201.66,
 "dU": -56.88.
 "sN": 0.4,
 "sE": 0.59.
 "sU": 1.57,
 "Type": "Co-seismic",
 "EQContributor": "EMSC",
 "EQEventID": "20151117_0000025",
 "QC": {
   "Data gap (missing days)": 62,
   "Last data point before": "2015-09-16",
   "First data point after": "2015-11-18"
```

Creation of a Jupyter notebook – GNSS co-seismic offset maps

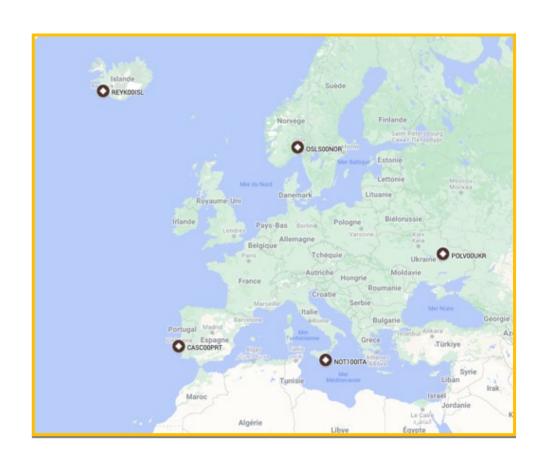
3) Extract and map GNSS co-seismic offsets for this EQ event and neighbouring GNSS stations

Decided to stop using GAMIT

GAMIIT/GLOBK

- High and increasing cost of DD, limitations :
 - Complexity / HR time / compute resources
 - High latency for new stations / networks, agencies that deliver data after D+2
 - Stations identified with 4-char IDs
 - MIT support

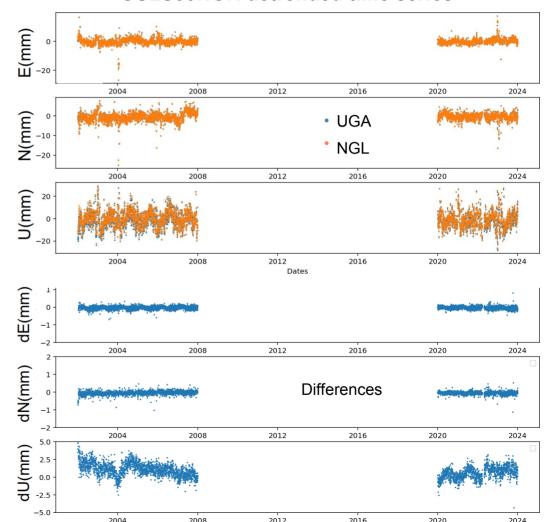
Switch to PPP ongoing


Tool	GipsyX	gins
Ву	JPL, USA	CNES, France
Users	Large user community (user forum)	Smaller user community (SPOTGINS project), reactive support from S. Loyer (CNES)
Status@UGA	Massive GipsyX processing operational at UGA	GINS tests done at UGA

Selection of 5 EPOS test GipsyX time series in IGS20

1) Comparison with NGL IGS20 time series

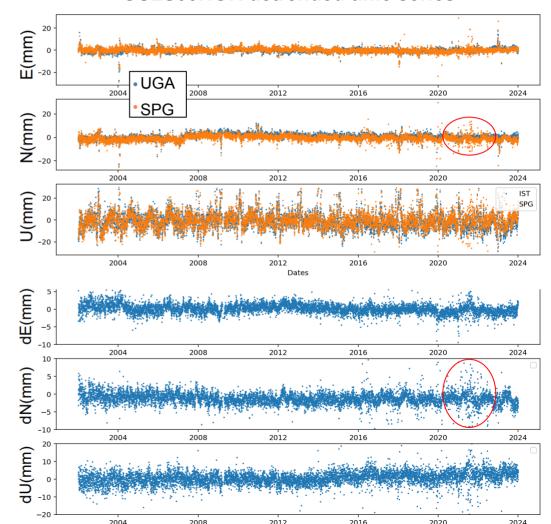
Parameter tests (Ocean tide, pole ocean tide, random walk) to minimize differences Some remaining parameter differences (input models, e.g. elevation weighting, ocean tide model, ...)

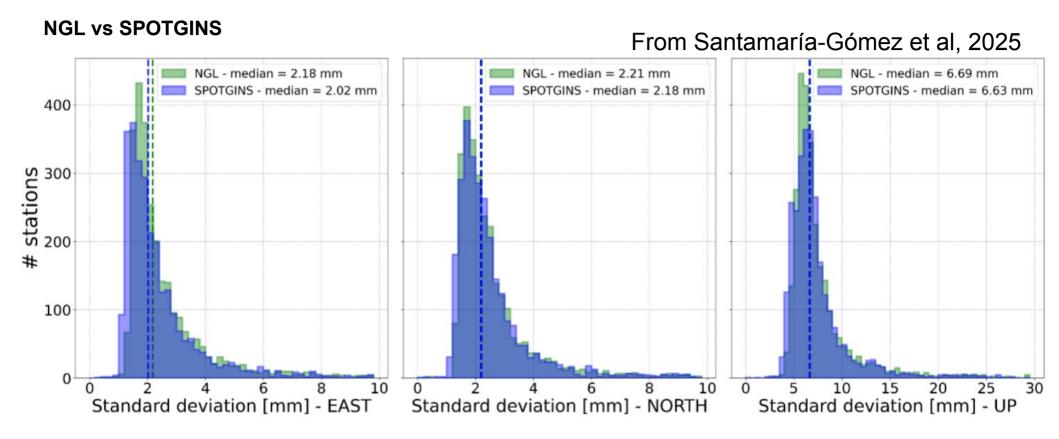

2) Comparison with SPOTGINS solution

UGA vs NGL: GipsyX 2.3

	UGA-CNRS	NGL
Constellation	GPS + Galileo	GPS only
Elevation weighting	DataSigma / sqrt(sin(el))	DataSigma / sin(el)
PCV from	igs20_wwww.atx	igs14_wwww.atx
IGRF model	IGRF13	IGRF12
Ocean Tide Loading Model	FES2022b	FES2004
Earth Orientation Parameter	IERS 2020	IERS 2010
Zenith delay: random walk	0.5x10e-4 km/sqrt(s)	1.0x10e-4 km/sqrt(s)
Horizontal delay gradients: random walk	1.0x10e-5 km/sqrt(s)	1.0x10e-5 km/sqrt(s)

OSLS00NOR detrended time series




UGA vs SPOTGINS

	UGA-CNRS	SPOTGINS
Orbits / clock products	JPL	GRG/G20
Ocean Tide Loading Model	FES2022b	FES2014b
Earth Orientation Parameter	IERS 2020	IERS 2010
Troposphere	Zenith delay and gradients estimate every 5 min	Zenith wet delay solved every hour, gradients horizontal delays solved twice a day
lonosphere 2nd order	JPL	IGS

Elevation cutoff, weighting, IAU precession/nutation theories...

OSLS00NOR detrended time series

Dispersion of the detrended and cleaned series by solution and coordinate component. The same period was considered for each of the 2948 pairs of common stations considered. The typical dispersion of both the SPOTGINS and NGL solutions is at the level of 2 mm and 6 mm, for the horizontal and vertical components, respectively.

Summary

UGA GAMIT-GLOBK solution...

...operational and distributed Including daily updates

Limitations:

- Limited reactivity for new data
- High ressource requirements

New products

- Instrument and co-seismic offsets
- Jupyter notebook for co-seismic offset mapping

Decision to switch to PPP: GipsyX

Latest version 2.3, IGS20

ASAP (intent: new solution in 2025)