Report of the Troposphere Coordinator

R. Pacione

e-GEOS, ASI/CGS-Matera, Italy
Outline

- Key Milestone in the EPN Tropospheric Products
- GNSS-Meteorology Concept
- EPN ZTD Time Series
 - 2nd EPN Reprocessing Campaign: EPN-Repro2 (1996-2014)
 - Operational Solution (2015-today)
- EPN ZTD data exploitation
- Summary and next steps
Key Milestone

- 2001: Special Project
- 2008: Routine Operation
- 2014: Troposphere Analysis Coordinator moved from BKG to ASI/CGS
GNSS-Meteorology Concept

Noise for Geodesy
Signal for Meteorology

Tropospheric delay

\[L_{rec}^{sat} = \rho_{rec}^{sat} + c \cdot (\delta t_{rec} - \delta t^{sat}) + \lambda \cdot N_{rec}^{sat} - d_{iono} + d_{tropo} + \varepsilon_{\phi} \]

\[d_{tropo}(\alpha, e) \equiv ZHD \times m_h(e) + ZWD \times m_w(e) + [G_N \cos \alpha + G_E \sin \alpha] \times m_G(e) \]

\[N_d = k_1 \cdot \left(\frac{P_d}{T} \right) \quad N_w = k_2 \cdot \left(\frac{e}{T} \right) + k_3 \cdot \left(\frac{e}{T^2} \right) \]

Integrated Water Vapour
\[IWV = \kappa (T_m) \cdot ZWD \]

EUREF 2018 Symposium, May 30, June 1 2018, Amsterdam, the Netherlands
Mean ZPD biases wrt weekly EPN troposphere solution

(EPN-repro2 + routine)

Year

ZPD Biases [mm]

ZPD STD [mm]

0 5

834 938 1042 1147 1251 1356 1460 1564 1669 1773 1877 1922

© EPN Central Bureau

EPN-Repro2 1996-2014
5 ACs

Operational 2015-today
16 ACs
EPN-Repro2 – from 1996 to 2014

EPN-Repro2 - From GPS wk 0834 to 1824
- 5 Input Solutions
- 3 main GNSS SW (Bernese, Gamit, Gipsy)

5 (+3) Solutions
- ASI (GIPSY, Full EPN)
- GOP (Bernese, Full EPN)
- LPT (Bernese, EPN sub-net)
- IGE (Bernese, EPN sub-net)
- MUT (GAMIT, Full EPN)

3 Bernese Solutions
- GOP (Full EPN network)
- LPT (EPN Sub-network)
- IGE (EPN Sub-network)

3 Solutions (Full EPN)
- ASI (GIPSY)
- GOP (Bernese)
- MUT (GAMIT)

Different software
Different networks

Same software
Different networks

Different software
Same network

COST ACTION ES1206 ‘GNSS4SWEC’ Working Group 3: ‘Use of GNSS tropospheric products for climate monitoring’

- First Reference data set: IGS Repro1 1995-2010 global
- **Second Reference data set: EPN-Repro2 1996-2014 Europe**

ZTD trends
EPN-Repro2 is a combined product.

Research Question:

Is there any ‘loss of information’ in performing the combination?

Wavelet analysis:

1. All 13 year-long time series have a very strong annual component
2. After removing it, finer features become visible
3. EPN spectra are similar

Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018
Wavelet as0 MATE

Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018
Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018
Operational Solutions

- **Period**: GPS weeks 1825 – 1996
- **16 ACs**: ASI, BEK, BEV, BKG, COE, IGE, IGN, LPT, MUT, NKG, RGA, ROB, SGO, SUT, UPA, WUT
- **Distributed Processing**: The EPN stations are distributed among the AC in such a way that each station is analyzed by at least three AC. This guarantees the reliability of the EPN products
- **GNSS SW**: GIPSY-OASIS (1 AC), GAMIT (1 AC), BERNESE (14 ACs)
- **Processing Options**: refer to ‘Guidelines for EPN Analysis Centres’

May, 23rd 2018: 323 EPN stations

<table>
<thead>
<tr>
<th>Station #</th>
<th>6 AC</th>
<th>5 AC</th>
<th>4 AC</th>
<th>3 AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>1</td>
<td>18</td>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>
Operational – Total vs Combined Stations

- EIG EUMETNET Project coordinating the near real-time delivery of data from ~3000 GPS sites delivering > 14M ZTDs pcm.
- Focus is on GPS-only hourly processing, delivering only ZTD in 90mins.
- Operational assimilation at a few European National Met Services, many others under testing.
- Use of E-GVAP ZTDs has proven positive impact on NWP forecast skill.
- Surface T and P used for conversion to Integrated Water Vapour (IWV).
- Active Quality Control (AQC) in place.
- MoUs in place with EUREF and EUPOS.
Operational – Cumulative Solution

- Tropospheric cumulative solution T1981, EUREF mail 9326
- Next update: October 2018
Operational – E-GVAP vs EPN

Period: Jul 2008 - Feb 2018

E-GVAP Super-Sites → EPN stations
GNSS-derive IWV can be used to derive water vapor attenuation, A_{wv} [1].

A_{wv}, plus dry air attenuation, get “clear sky” or gaseous attenuation.

Gaseous attenuation is used to derive total attenuation from beacon measurements in propagation experiments [2].

Como EPN IWV data are compared with Milano IWV radiometric measurements.

Distance Como-Milano: \sim 37.5 km.

Preliminary results satisfactory.

Courtesy of G.Siles (UPB)

Summary and next steps

- ZTD Products at the EPN stations available since 1996
- EPN-Repro2 selected as the 2° community reference data set by ‘GNSS4SWEC’ WG3
- Routine monitoring activities of the EPN AC troposphere solutions
- Routine inter-technique evaluation
- Next steps:
 - Horizontal Gradients evaluation
 - EVGA and EPN collocated stations
 - SINEX_TRO v2.0

Acknowledgment: e-GEOS work is carried out under ASI contract N. 2017-21-I.0