EPN Repro2: A Reference Tropospheric Dataset over Europe

R. Pacione

EPN Tropospheric Coordinator

e-GEOS, ASI/CGS-Matera, Italy

and the EPN Repro2 team
Outline

- EPN Repro2 Campaign (1996-2013 with extension to 2014)
 - Features of the delivered solutions
- Homogeneously reprocessed long-term tropo products
 - Preliminary & Final Combined ZTD Solution
 - Horizontal Gradient Evaluation
- EPN Repro2 end-user
- Summary
GNSS Solutions: SW & Network coverage

- **5 ACs**: ASI GOP IGE LPT MUT
- **5 (+3) input solutions available**
- **Tropospheric Parameters**: ZTDs & Gradients

5 (+3) Solutions
- ASI (GIPSY, Full EPN)
- GOP (Bernese, Full EPN)
- LPT (Bernese, EPN sub-net)
- IGE (Bernese, EPN sub-net)
- MUT (GAMIT, Full EPN)

3 Bernese Solutions
- GOP (Full EPN network)
- LPT (EPN Sub-network)
- IGE (EPN Sub-network)

3 Solutions (Full EPN)
- ASI (GIPSY)
- GOP (Bernese)
- MUT (GAMIT)

- **Different software**
- **Different networks**
- **Same software**
- **Different networks**
- **Different software**
- **Same network**

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Features of the solutions

- **GLONASS**
 - available since 2003, very few stations at the beginning
 - only used LPT and IGE solutions

- Different PCV corrections used: *‘type mean’ & ‘type mean + individual’*

- Non Tidal Atmospheric Loading: *Yes/No*

- **Orbits**
 - CODE reprocessed: IGE, GOP, LPT, MUT
 - JPL reprocessed: ASI

- Different MF used: **GMF & VMF1**
Impact of GLONASS

LPT processing, Courtesy E. Brockmann

ZTD trend computed over 111 sites

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
KLOP00DEU (KLOP): differences between ‘individual’ & ‘type mean’ calibration

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>Diff. Up</th>
<th>Diff. ZTD</th>
<th>Antenna + Radome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-06-27 : 2013-06-28</td>
<td>8.7 mm</td>
<td>-1.3 mm</td>
<td>TRM55971.00 TZGD</td>
</tr>
</tbody>
</table>

MUT processing, Courtesy A. Araszkiewicz

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Individual vs Mean Type calibration

KLOP00DEU (KLOP): AC Bias & STD w.r.t. the combination for 2007

1433 KLOP antenna change

Results from the combination

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Impact of NT-ATL on ZTD and Height

MUT processing, Courtesy A. Araszkiewicz

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
EPN-Repro2: Available Sites

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
EPN-Repro2: Sites Redundancy

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Preliminary Repro2 ZTD Combination

- 8 input solutions: AS0, GO0, GO1, GO4, LP0, LP1, MU4

Purpose:
- test all the available solutions
- flag the outliers
- send feedback to the ACs

IWV Accuracy for Regional Climate
(E-GVAP II Product Requirements Document)

- Threshold: 3 kg/m²
- Breakthrough: 1.5 kg/m²
- Goal: 1 kg/m²

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Final Repro2 ZTD Combination

- 5 input solutions: AS0, GO4, IG0, LP1, MU2

![Graph showing weekly mean and standard deviation of ZTD combinations over a period from 1980 to 2018. The graph includes a line for each input solution (AS0, GO4, IG0, LP1, MU2) with markers for weekly mean and standard deviation. The graph highlights a range of +2 mm to -2 mm and 2.5 mm.]

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
ASI: Repro2 vs Repro1+Operational

Repro1 & Operational

http://www.epncb.oma.be/_productsservices/sitezenithpathdelays/

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Evaluation of Horizontal Gradients

<table>
<thead>
<tr>
<th>TROPOSPHERE Estimated Param</th>
<th>AS0</th>
<th>GO4</th>
<th>IG0</th>
<th>LP1</th>
<th>MU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTD (5min)</td>
<td>ZTD (1h)</td>
<td>ZTD (1h)</td>
<td>ZTD (1h)</td>
<td>ZTD (1h)</td>
<td></td>
</tr>
<tr>
<td>GRAD (5min)</td>
<td>GRAD (6h)</td>
<td>GRAD (6h)</td>
<td>GRAD (24h)</td>
<td>GRAD (24h)</td>
<td></td>
</tr>
<tr>
<td>Cut-off angle</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>MAPPING FUNCTION</td>
<td>VMF1</td>
<td>VMF1</td>
<td>GMF</td>
<td>VMF1</td>
<td>VMF1</td>
</tr>
<tr>
<td>ZTD/GRAD time stamp</td>
<td>hh:30 24 estimates/day</td>
<td>hh:30 (and hh:00) 24(+24) estimates/day</td>
<td>hh:30 24 estimates/day</td>
<td>hh:30 (and hh:00) 24(+24) estimates/day</td>
<td>hh:30 24 estimates/day</td>
</tr>
</tbody>
</table>

GNSS Twin Sites

VLBI and GNSS co-located sites

2013 May 20 UTC 00

1 mm

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
MEDI East, North Gradients

ERA-Interim as reference

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Water vapour is under-sampled in the current meteorological and climate observing systems. **Climate community** only now starting to use GNSS tropospheric products.

COST ACTION GNSS4SWEC
WG3: GNSS for climate monitoring

J. Jones at al. ‘**COST ACTION ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SEC)**’
gnss iwv trends and variability

- Assessment of Med-CORDEX, Euro-CORDEX climate model simulation using GNSS IWV long time series.

- IGS Repro1 (1996-2010) used as reference reprocessed GPS solution.

→ Data after 2010 are required!

- The climate groups expressed the need for more spatially dense GPS ZTD/IWV data over Europe.

→ EPN Repro2 compliant to both requirements!

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain
Summary

- **EPN Repro2 Campaign**: 1996-2013/2014 homogeneously reprocessing tropospheric products from **5 EPN ACs**.

- Impact of the features of the contributing solutions evaluated prior to the combination.

- **Preliminary** EPN Repro2 ZTD **combination** based on 8 input solutions (**AS0, GO0, GO1, GO4, IG0, LP0,LP1, MU4**) done to test them, to flag the outliers, to send feedback to the Acs.

- **Final** EPN Repro2 ZTD **combination** based on 5 input solutions (**AS0, GO4, IG0,LP1, MU2**) done. Same solutions used by the EPN ACC in the final combination of the EPN positions.

- **Horizontal Gradients** evaluation, both intra-technique and inter-technique, on a EPN sub-network.

- Comparison with respect to radiosonde data is on-going.

- Products will be available to the user community.
Acknowledgment

EPN Repro2 Working Group

Araszkiewicz Andrzej MUT
Brockmann Elmar LPT
Di Tomaso Simona ASI/CGS
Dousa Jan GOP
Figurski Mariusz MUT
Ineichen Daniel LPT
Kenyeres Ambrus FOMI
Pacione Rosa ASI/CGS
Sánchez Sobrino José Antonio IGE
Szafranek Karolina MUT
Soehne Wolfgang BKG
Valdés Pérez De Vargas Marcelino IGE
Völksen Christof BEK

CODE and JPL IGS AC are acknowledged for providing the GNSS products used in this work.
e-GEOS work is carried out under ASI contract 2015-050-R.0.

EUREF Symposium 2016, 25-27 May 2016, San Sebastian, Spain