The ALPS-GPSQUAKENET project

A permanent GPS network in the Alps

C. Völksen 1) , A. Walpersdorf 2) , A. Aoudia 3) , R. Barzaghi 4) , A. Borghi 4) , L. Cannizzaro 4)

1. Bayerische Kommission für die Internationale Erdmessung (BEK), Germany
2. Laboratoire de Géophysique Interne et Tectonophysique, Université Joseph Fourier, France
3. Earth System Physics Section. The Abdus Salam International Centre for Theoretical Physics, Italy
4. DIIAR, Politecnico di Milano, Italy

EUREF 2008
"Alpine Integrated GPS Network: Real-Time Monitoring and Master Model for Continental Deformation and Earthquake Hazard"

Establishment of a geodetic network covering the ALPS (40 CGPS) for the determination:
- Crustal deformation (GPS),
- Landslides (GPS und INSAR) and
- Meteorology (GPS)

Partly funded (50%) by INTERREG IIIb Alpine Space!

Partners from the following countries:
France (2), Italy (7), Germany (2) and Slovenia (1)
Missing: Austria and Switzerland
Alpine Deformation

- Collision of the Eurasian and African plates leads to the formation process of the ALPS.

- **Western Alps:**
 - Low to moderate seismotectonic activity
 - E-W extension in the central part of the mountain belt is observed by GPS studies (1997-2001)
 - Compressional Strain (N-S & NW-SE) is observed in the southern part (Calais et al., 2002)

- **South-Eastern Alps:**
 - Represents one of the seismically active regions in Europe
 - Appearance of active faults
 - Seismic Events: Friuli sequence ($M=6.5$), Western Slovenia (1998 $M=5.7$ and 2004 $M=5.3$)

- Glacier shrinkages lead to vertical uplift (significant signal ?).
Distribution of Earthquakes

Source:
NEIC: National Earthquake Information Centre.

Showing earthquakes since 1986 with $M_s > 3.5$

Concentration:
Friuli, Apennine

EUREF 2008
Data Availability

- Frequent data gaps (incomplete).
- Daily access is limited to a few stations.
- Late realisation of the stations leads to rather short time series.
- Of the 40 stations only 29 deliver or delivered data to the Trieste data centre.

=> Collection of additional data:
 - Austria (+ 11 sites)
 - Italy [FReDNet: The Friuli Regional Deformation network] + 13 sites
Complete GPS network
(73 sites processed)

No coverage of Switzerland, yet!!
Daily Data Analysis

Re-processed Orbits/ERP by:
GFZ Potsdam
TU Dresden
TU München

- 1200 daily solutions files
 Spanning data between 2005, 001 - 2008, 099

EUREF 2008

18.6.2008
Estimation of the velocity field

- **MC-Condition:**
 - Translation and rotation (Vel/Pos)
 - Stations used: BRUS, GRAS, MATE, POTS, WTZR, ZIMM.

EUREF 2008 18.6.2008
Time Series
(linear Trend removed)

WART

EUREF 2008
18.6.2008
Annual and Semi-Annual Signals

RMS of TS

Station

Amplitude Annual Signals

Amplitude Semi-Annual Signals

EUREF 2008

18.6.2008
Time Series “Patscherkofel”
(linear Trend removed)

After Removal of periodic signals for selected sites:
Coordinate Repeatabilities are
North=1.3, East=1.3 mm, Height=3.8 mm
Horizontal Velocities in ETRS

Selected Stations only (>2a)

EUREF 2008

18.6.2008
Deformation across the Eastern Alps

Deformation Zone:

\[\Phi = 46.5-48.3^\circ \text{ N} \]
\[\Lambda = 12.0-14.0^\circ \text{ E} \]
Profile across the Alps

Northward Motion
Eastern Alps

Friuli
Austria
HKBL
German Stations

[mm/a]

[km] from BASO

EUREF 2008
18.6.2008
Conclusions

• Time series of the stations are still very short.
 - Stations with a history of close to 3 years show [(FReDNET), Austria+ EPN] significant horizontal deformations.
 - Access to the data of the GAIN network needs to be improved!
 - Due to the shortness of the time series vertical velocities are still critical (no discussion at the moment).
 - Some sites show clear seasonal dependence, origin is still unknown and needs to be evaluated (Snow and others).

• Western ALPS and Eastern Alps show different behaviour:
 - West: partly extension, but still very noisy!
 - East: shortening across the ALPS is clearly visible
 • Deformation zone in the Eastern Alps shows compression between 2.5 – 1 mm/a.

• Extend analysis over several years.
Annual and Semiannual Signals

<table>
<thead>
<tr>
<th>Station</th>
<th>RMS (new)</th>
<th>North</th>
<th>East</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>North</td>
<td>East</td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>annual</td>
<td>semia.</td>
<td>annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>cos</td>
<td>sin</td>
</tr>
<tr>
<td>AFAL</td>
<td>1,21</td>
<td>2,47</td>
<td>3,22</td>
<td>0,25</td>
</tr>
<tr>
<td>COMO</td>
<td>1,67</td>
<td>2,06</td>
<td>3,88</td>
<td>0,27</td>
</tr>
<tr>
<td>FAHR</td>
<td>1,12</td>
<td>1,36</td>
<td>3,05</td>
<td>-0,13</td>
</tr>
<tr>
<td>HFLK</td>
<td>3,15</td>
<td>1,46</td>
<td>3,51</td>
<td>-1,58</td>
</tr>
<tr>
<td>KOET</td>
<td>1,98</td>
<td>2,51</td>
<td>4,85</td>
<td>0,51</td>
</tr>
<tr>
<td>PADO</td>
<td>2,22</td>
<td>1,48</td>
<td>3,25</td>
<td>-2,27</td>
</tr>
<tr>
<td>PATK</td>
<td>2,16</td>
<td>2,19</td>
<td>6,83</td>
<td>0,23</td>
</tr>
<tr>
<td>ROSD</td>
<td>1,50</td>
<td>2,51</td>
<td>5,15</td>
<td>0,02</td>
</tr>
<tr>
<td>TRIE</td>
<td>1,09</td>
<td>1,39</td>
<td>3,42</td>
<td>-0,10</td>
</tr>
<tr>
<td>WELS</td>
<td>2,89</td>
<td>1,29</td>
<td>4,50</td>
<td>2,79</td>
</tr>
</tbody>
</table>

After Removal of periodic signals for selected sites:

Coordinate Repeatabilities are

North=1.3, East=1.3 mm, Height=3.8mm
Improved Velocities by Removal of annual and semiannual signals

Velocity Changes
(removal annual + semi-annual)

EUREF 2008