EVRF2007
as Realization of the European Vertical Reference System

Martina Sacher, Johannes Ihde, Gunter Liebsch
Bundesamt für Kartographie und Geodäsie (BKG)
Jaakko Mäkinen
Finnish Geodetic Institute
1. Objectives
2. Definition
3. Realization
 3.1 Data
 3.2 Datum
 3.3 Epoch of the measurements
 3.4 Tidal reductions
4. Summary of the adjustment parameters
5. Comparison to previous adjustments
6. Delivery of the Results
7. Next steps
1. Objectives of EVRF2007

EUREF- Symposium 1994 in Warsaw, Resolution No.3:

- Establishing of a Unified vertical datum for Europe at the 1-dm level (CERCO)
- Providing of first results January 1999 – UELN 95/98
- First EVRS Definition Tromsø 2000, realization: EVRF2000

9th EC GI-GIS conference June 24-26 2003, La Coruna:

- Need for harmonization of vertical reference of spatial coordinates
1. Objectives of EVRF2007 (2)

Workshop (EC, EuroGeographics) „Vertical Reference Systems for Europe“
April 5-7 2004, Frankfurt:

• Consideration of user requirements in Europe
• Realization of an up-to-date European height reference frame
• Continuation of the previous development of EVRS
• Guarantee of a 1 cm accuracy level for datum and network realization
• Alignment to IVRS/WHS
The European Vertical Reference System (EVRS) 2007 is a kinematical height reference system. The EVRS definition fulfils the following four conventions:

1. The vertical datum is defined as the equipotential surface for which the Earth gravity field potential is constant:

 \[W_0 = W_{0E} = \text{const}. \]

 And is in the level of the Noormals Amsterdam Peil.

2. The unit of length of the EVRS is the meter (SI). The unit of time is second (SI). This scale is consistent with the TCG time coordinate for a geocentric local frame, in agreement with IAU and IUGG (1991) resolutions. This is obtained by appropriate relativistic modelling.
3. The height components are the differences ΔW_P between the potential W_P of the Earth gravity field through the considered points P and the potential of the EVRS conventional zero level W_0. The potential difference ΔW_P is also designated as geopotential number c_P:

$$-\Delta W_P = c_P = W_{0E} - W_P.$$

The metric equivalent is the normal height.

4. The EVRS is a zero tidal system, in agreement with the IAG Resolution No 16 adopted in Hamburg in 1983.
3.1 Data

New data of 14 countries since 1999:

- Estonia (1999) new part of the network
- Latvia (1999) new part of the network
- Romania (2000) new part of the network
- Lithuania (2001) new part of the network
- Switzerland (2002) update
- Bulgaria (2003) new part of the network
- the Netherlands (2005) update
- Finland (2005) update
- Norway (2005) update
- Sweden (2005) update
- Slovakia (2007) update
- Lithuania (2007) update
- Poland (2007) update
- Portugal (2007) update
Status of UELN data August 2007

- data part of UELN 73/86
- data part of UELN 95/98
- data provided after 1998
- new data announced
3.2 Datum

- Realization of the datum of EVRF2000
 - Reference point 000A2530 in the Netherlands

- Realization of the datum of EVRF2007
 - Several datum points distributed over the stable part of Europe
 - Participating countries were asked to propose stable points
 - 19 points were proposed
 - 13 points have been used
 \[
 \sum_{i=1}^{13} (c_{EVRS2000} - c_{EVRS2007}) = 0
 \]
 - Points of Great Britain, France, Spain and Portugal weren't used because of expected height changes in the area after the planned including of new measurements of France and the connection between F and UK
 - Only 2 of 3 proposed points of NL were used (for the reason see the report)
3.3 Epoch of the measurements

EVRF2000:
- Measurements of Finland, Norway and Sweden had been reduced to the epoch 1960
- All other data had not been reduced to a common epoch

EVRF2007
- Reduction to the epoch 2000 by the land uplift model NKG2005LU (Ågren and Svensson)
- 3 modalities of reduction:
 a) only the data of Finland, Norway and Sweden
 b) Finland, Norway, Sweden and additional Denmark
 c) all data located in the validity area of the model (just as in the BLR2000 adjustment) final variant
- Assumption: datum points have velocity zero
3.4 Tidal reductions

EVRF2000:
• EVRS defined as zero tidal system
• no reductions were applied - in practice mean tidal system

EVRF2007
• Reduction of the geopotential differences by

\[
\Delta C_Z = \Delta C_M - 0.28841 \cdot (\sin^2 \varphi_2 - \sin^2 \varphi_1) - 0.00195 (\sin^4 \varphi_2 - \sin^4 \varphi_1)
\]

in kgal·m
Tidal reductions (2)

Treatment of the datum points:

a) \[C_{dp2007} = C_{dp95/98} - 0.28841 \cdot \sin^2 \varphi - 0.00195 \cdot \sin^4 \varphi + 0.09722 \] [kgal·m]

Corrections range between −0.014 (E) and −0.108 (DK) kgal·m.

b) Additionally transformation by +0.08432 kgal·m, the tidal reduction of the datum point of EVRF2000 with opposite sign:

\[C_{dp2007} = C_{p95/98} - 0.28841 \cdot \sin^2 \varphi - 0.00195 \cdot \sin^4 \varphi + 0.09722 + 0.08432 \] [kgal·m]

Points with the same latitude as the former datum point 000A2530 have the tidal reduction 0

Corrections range between +0.070 (E) and −0.024 (DK) kgal·m. final variant
4. Summary of the adjustment parameters

- Datum realization by 13 datum points
- Reduction to the zero tidal system
- Reduction of the measurements to the epoch 2000 using the whole NKG2005LU model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EVRF2000</th>
<th>EVRF2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of datum points:</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Number of unknowns:</td>
<td>3063</td>
<td>7939</td>
</tr>
<tr>
<td>Number of measurements:</td>
<td>4263</td>
<td>10347</td>
</tr>
<tr>
<td>Number of condition equations:</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Degrees of freedom:</td>
<td>1200</td>
<td>2409</td>
</tr>
<tr>
<td>A-posteriori standard deviation referred to 1 km levelling distance in kgal·mm:</td>
<td>1.10</td>
<td>1.11</td>
</tr>
<tr>
<td>Mean value of the standard deviation of the adjusted geopotential numbers (± heights), in kgal·mm:</td>
<td>19.64</td>
<td>16.05</td>
</tr>
<tr>
<td>Average redundancy:</td>
<td>0.281</td>
<td>0.233</td>
</tr>
</tbody>
</table>
5. Comparison to previous adjustments

• Comparison EVRF2007 to the adjustment UELN 95/98 (EVRF2000)
• Different extension of EVRF2000 and EVRF2007
• interim solution of 2003 very similar to EVRF2000 – main differences at the north-eastern and south-eastern boundaries of the network because of additional data of BG, EE, LT, LV, RO + updated data of CH
• therefore UELN (2003) can be used as basis for comparison:
• Comparison EVRF2007 to the adjustment UELN (2003)
• Causes for differences:
 - updated levelling data of 8 countries (NL, SE, FI, NO, SK, LT, PL, PT)
 - land uplift (new reference epoch, new model, new data)
 - different tidal correction (mean/zero)
• Comparison EVRF2007 to the adjustment UELN (2003) without tidal correction – both in the mean tidal system
Comparison of the adjusted heights of EVRF2000 and EVRF2007

Differences in kgal*mm

-100 to -50
-10 to -5
-5 to -3
-3 to -2.5
-2.5 to -2
-2 to -1.5
-1.5 to -1
-1 to -0.5
-0.5 to 0
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 5
5 to 10
10 to 50
50 to 100
100 to 310

EUREF Symposium June 2008 Brussels
Comparison of the adjusted heights of 2003 adjustment and EVRF2007

Differences in kgal*mm

-100 to -50
-5 to -10
-1 to -1.5
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 5
5 to 10
10 to 50
50 to 100
100 to 310
Comparison of the adjusted heights of 2003 adjustment and EVRF2007 in the mean tidal system

Differences in kgal*mm

-100 to -50
-50 to -10
-10 to -5
-5 to -3
-3 to -2.5
-2.5 to -2
-2 to -1.5
-1.5 to -1
-1 to -0.5
-0.5 to 0
0 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 5
5 to 10
10 to 50
50 to 100
100 to 310
<table>
<thead>
<tr>
<th>Country</th>
<th>Differences in kgal·mm</th>
<th>Country</th>
<th>Differences in kgal·mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>mean</td>
</tr>
<tr>
<td>Austria</td>
<td>14</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Belgium</td>
<td>-11</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-153</td>
<td>41</td>
<td>-7</td>
</tr>
<tr>
<td>Germany</td>
<td>-24</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>-23</td>
<td>-4</td>
<td>-11</td>
</tr>
<tr>
<td>Spain</td>
<td>11</td>
<td>62</td>
<td>46</td>
</tr>
<tr>
<td>France</td>
<td>-8</td>
<td>39</td>
<td>17</td>
</tr>
<tr>
<td>Italy</td>
<td>23</td>
<td>75</td>
<td>44</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-222</td>
<td>29</td>
<td>-10</td>
</tr>
<tr>
<td>Portugal</td>
<td>58</td>
<td>93</td>
<td>72</td>
</tr>
<tr>
<td>Hungary</td>
<td>14</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Great Britain</td>
<td>-43</td>
<td>-3</td>
<td>-21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Differences in kgal·mm</th>
<th>Country</th>
<th>Differences in kgal·mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>mean</td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

compared to 95/98 compared to 2003
6. Delivery of the Results

Handing over to the participating countries at May 5th 2008:

• Draft: “EVRF2007 as Realization of the European Vertical Reference System“

• Draft: “Conventions for the Definition and Realization of a European Vertical Reference System (EVRS)”

• 2 files with adjustment results
 a) point related data
 • adjusted geopotential numbers
 • normal heights (using the normal potential of GRS80)
 • standard deviation
 b) measurement related data
 • weight, improvement
 • standardized improvement, redundancy
 • adjusted geopotential number + standard deviation
• Up to now no agreement on data exchange exists.
• Therefore only the national part of the results have been handed over to the respective country.
• Should the complete results be available to all participating countries (at least the adjusted heights and coordinates of the nodal points)?

Splinter meeting this afternoon after the last session

Representatives of all participating countries have been invited.
7. Next steps

- Transformation parameters between national height systems and EVRF2007 will be provided at http://crs.bkg.bund.de/crs-eu/ (autumn 2008)
- Update of EUVN_DA leveling heights (autumn 2008)
- Integration of the new French zero-order leveling network including the measurement through the Euro-tunnel (2009 ?)
- Integration of new Spanish leveling data (20??)
- Integration of some bordering loops of Russia (2009) at first step of closing the Baltic Ring
Thanks!

Thanks to all participating countries for your contribution!

Austria
Belgium
Bosnia and Hercegovina
Bulgaria
Croatia
Czech Republic
Denmark
Estonia
Finland
France
Germany
Great Britain
Hungary

Italy
Latvia
Lithuania
Netherlands
Norway
Poland
Portugal
Romania
Slowakia
Slowenia
Spain
Sweden
Switzerland

EUREF Symposium June 2008 Brussels

24
Variant c) - Differences to the BLR2000

Differences UELN - NKG in kgal*mm
FIN, NO, SE, DK, D, PL, LT, EST, LV reduced to epoch 2000

-70.8 -65.8
-65.7 -60.9
-60.8 -56.0
-55.9 -51.0
-50.9 -46.1
-48.0 -41.1
-41.0 -36.2
-36.1 -31.3
-31.2 -26.3
-26.2 -21.4
-21.3 -16.4
-16.3 -11.5
-11.4 -6.6
-6.5 -1.6
-1.5 +3.3
+3.4 +8.3
+8.4 +13.2
+13.3 +18.1
+18.2 +23.1
+23.2 +26.0