

European Velocity Field and EPN ETRS89 positions and velocities

Zuheir Altamimi, Juliette Legrand Laboratoire de Recherche en Géodésie Institut Géographique National, France

Dense European Velocity Field

• Long term maintenance of the ETRS89

• Precise ETRS89 station positions & velocities of the EPN (Basis of the Velocity Model)

• Accurate frame definition using minimum constraints approach

Datum Definition / Minimum Constraints (1/2)

 X_R : Reference TRF Solution Z

X_C: Estimated TRF Solution

$$X_R = X_C + A\theta$$

$$\boldsymbol{\theta} = (T_1, T_2, T_3, D, R_1, R_2, R_3, \dot{T_1}, \dot{T_2}, \dot{T_3}, \dot{D}, \dot{R_1}, \dot{R_2}, \dot{R_3})^T$$

L.S. gives

$$\theta = \overbrace{(A^T A)^{-1} A^T}^{\mathbf{B}} (X_R - X_C)$$

To have X_C expressed in the same frame as X_R (i.e. $\theta = 0$), we can write

$$B(X_R - X_C) = 0 \qquad (\Sigma_\theta)$$

In terms of NEQ

$$B^T \Sigma_{\theta}^{-1} B(X_R - X_C) = 0$$

Datum Definition / Minimum Constraints (2/2)

The initial NEQ system of space geodesy observations could be written as :

$$N_{unc}(\Delta X) = K \tag{3}$$

Cumulating (3) and (4) yields :

 $(N_{unc} + B^T \Sigma_{\theta}^{-1} B)(\Delta X) = K + B^T \Sigma_{\theta}^{-1} B(X_R - X_{apr})$

European Velocity Field Start with EPN Wkly Combined Solutions

- Remove Constraints
- Add Minimum constraints
- Reject outliers and properly handle discontinuities

First results

Combination of weeks from 837 to 1263

EPN and Selected set of Reference Stations

TRF & EOP time series Combination CATREF Software

INPUT: *X*(*t*), **EOP**(**t**) in daily/weekly/monthly SINEX files

OUTPUT: $X(t_0), \dot{X}, \text{EOP(t)}, (\underline{T_x, T_y, T_z}, D, R_x, R_y, R_z)$ **Geocenter** $\begin{cases}
X_s^i = X_{itrf}^i + (t_s^i - t_0) \dot{X}_{itrf}^i + T_k + D_k X_{itrf}^i + R_k X_{itrf}^i \\
+ (t_s^i - t_k) \left[\dot{T}_k + \dot{D}_k X_{itrf}^i + \dot{R}_k X_{itrf}^i \right] \\
\dot{X}_s^i = \dot{X}_{itrf}^i + \dot{T}_k + \dot{D}_k X_{itrf}^i + \dot{R}_k X_{itrf}^i
\end{cases}$

Datum Definition
$$(A^T A)^{-1} A^T (X_{RS} - X_c) = 0$$

$$\begin{cases} x_s^p = x^p + R2_k \\ y_s^p = y^p + R1_k \\ UT_s = UT - \frac{1}{f}R3_k \\ \dot{x}_s^p = \dot{x}^p + \dot{R}2_k \\ \dot{y}_s^p = \dot{y}^p + \dot{R}1_k \\ LOD_s = LOD + \frac{\Lambda_0}{f}\dot{R}3_k \end{cases}$$

- Matching common EOP parameters at UT noon
- Propagate at UT noon if rates are available

Differences btw Contsr'd and MC (W-1263)

North (mm)

East (mm)

UP (mm)

12 ITRF2000 Ref. Stations Using all stations as RS **16 ITRF2000 Ref. Stations** 1864208 North (mm) North (mm) 1864208 East (mm) East (mm) UP (mm) UP (mm) bila da

EPN ETRS89 Horizontal Velocities

Handling discontinuities

Handling discontinuities

EPN ETRS89 Horizontal Velocities

EPN ETRS89 Vertical Velocities

Vertical Velocities (?)

SOLN

Vertical Velocities (?)

Quality Evaluation

EUREF Weekly WRMS

Quality Evaluation

Conclusions

- EPN-ETRS89 station positions & velocities will be available for users
- Updated regularly (annually)
- Dense velocity field will include other networks (national, local)
- Minimum constraints approach insure internal consistency
- EUREF Weekly WRMS:
 - 2 mm in horizontal
 - **4-5 mm in vertical**
- Re-computing EUREF weekly solutions will certainly improve their quality