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The Influence of lonospheric Refraction
in the Computation of Large Densification Networks

A.RUDJA, J. SANDER*

Abstract

The GPSsignalstravelling through the atmosphere are affected
by free charged particles in the ionosphere. The degree of
ionisation changing over the time is correlated with the solar
activity having besi desothersthe period about 11 years, known
as Solar Cycle.

High degree of automation, low timeconsumptionin dataeval ua
tion and possibilitiesto obtain reliable resultsin general made
the use of so called "hands-off” software packages common
in computation of large densification networks. But, the possibili-
tiesfor modelling of different factorsaccompanyingwith GPS
measurementsinthose packagesarelimited. Thebalanced, bet-
ween theimpact of theionosphericrefractionin caseof L,alone
and increase of noiselevel accompanying with introducing of
linear combinations of GPSsignals, solutionisdescribed. The
changing accuracy characteristics during the last Solar Cycle
in base of themeasured 15692 GPSvectorsof the Densification
Network of Estonia are outlined.

1. Introduction

The GPS signalstravelling through the atmosphere are af -
fected by freecharged particlesintheionosphere. Theimpact
of theionosphere on the propagation of radio wavescould
be expressed by the total number of electronsin arotation
cylinder centred on the line of sight receiver-satellite with
cross section of onesquaremeter, knownasTotal Electron
Content (TEC)

Satellite

E=| n(skds @
where n, is electron density in units of electrons/m?and s
isthe signal path.

Theimpact of theionosphereisdirectly related with degree
of ionisation changing continually together with changes
insolar radiation and Earth’ smagneticfield. It canbeshown
(LANGLEY 2000) that the changes are both in space and
time. The maximum ionospheric activity occursin + 20/
from geomagnetic equator andinauroral and polar regions.
Duringthediurnal variation themaximumionisation occurs
at about 14:00 of local timebeinginminimumat night times.
If wetakeal ook at the seasonal variationthehigher activity
could be observedin summer. Besidesothersthe degree of
ionisation is correlated with the solar activity having the
period, known as Solar Cycle, about 11 years. Theimpact
of theionosphericrefractionin caseof single-frequency data
tothedifferential phase measurementsisasystematic baseli-
ne shortening proportional tothebasalinelength andionos-
phericrefractivity. For themid-latitudesahorizontal scale

bias of —0.06 + 0.08 ppm /TECU is estimated (BEUTLER
et a., 1989, LANGLEY 2000). Degree of the impact is a
function of zenith distance, i.e. dependsonthe antennacut-
off angleused in GPS sol ution. Among the systematic shorte-
ning of the baselines the rapid changes in the receiving
phasesof thecarrier sgna saccompanieswith highionosphe-
ricactivity. That could causeatemporary lossof lock resul -
tinginthecycledipsand decreasethesignal to noiseratio
of receiving S gnal smaking theambiguity resolutionunstable
(BEUTLER et al., 1989).

2. Data used: The Densification Network of
Estonia

TheDensification Network isthe densification of thel and
I order networks established within 1996 — 1998 by AS
PLANSERK, workingunder contract with the Estonian Land
Board (ELB). National Geodetic Network consist of 13 |
order points submitted to the EUREF as class B standard
and 199 |1 order points (RUDJA 1998, RUDJA 1999). For
thedataprocessing the Bernese GPS Software (ROTHACHER
and MERVART 1996) and | GSfinal orbitswere used giving
agood opportunity to take the wide spectrum of different
factors accompanying with GPS measurements, including
the affect of ionosphere, into a consideration. The Den-
sification Network cond sting of 3922 pointswasestablished
area by area during the period from 1992 up to 2001 (Fig.
1) by RASREI, OU REIB and AS PLANSERK, working
under contract with the ELB. Excluding thefirst two years
the network was monumented with point pairshaving distan-
ce between the points 500 m on average. T he distance bet-
ween point pairsand between the single network pointses-
tablished during two first yearsis 5 km on average.

In measurements the Ashtech P-12, Ashtech Z-12, Javad
Regency and Legacy GPSreceiverswereused. Chokering
antennaswere used starting fromyear 1999. The main cha-
racteristicsof GPS measurementswereasfollows: average
length of the measurement session 1" 30™, sampling rate 15°,
antennacut of angle 10/. Thedatawasevaluated usingsingle
baseline concept software GPPS from package PRISM
(Ashtech Inc.), in cal culations the broadcast ephemerides
and troposphere model with standard parameterswere used.
Theuseof moresophisticated multistation-multi session soft-
warelike Bernese GPS Software was put aside because of
time consumption of cal culations taking the huge number
of measured GPS vectors, totally 15 673, into account. In
the processof dataeval uationtheantennacut-off anglewas
raisedto 15/. Thenetwork was adjj usted with software Global
XAPositioning System (Inpho Technology OY).
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Figure 1. The Densification Network of Estonia and the years of the establishment.

3. Thechoicefor bound between L, aloneand
ionospher e free solutions

Reduction of the ionospheric refraction can be done in
numerous methods. I ntroduction of theionospheremodels
into the L, solution is one, good, example (WILD 1994,
SCHAER 1997, SCHAER etal. 1998, WOLF and PETIT 1999).
Theuseof somefrom principal ly unlimited number of linear
combinations of GPS signalsL, and L, isanother way. In
selection of someparticular combinationcriterialikeability
to produceinteger phase ambiguities, large wavelength to
help ambiguity fixing, low ionospheric refraction and low
observation noiseareconsidered. Incommercia softwares
thepossibilitiesarelimited at once. Inthe PRISM package,
usedinour case, thereareonly two possibilities—theionos-
pherefreelinear combination L 1c or Widelane algorithm.
L 1clinear combinationwasput as debecause of theinability
of fixing phaseambiguities. Thegoal of theWidelanealgo-
rithm (Ashtech Inc. 1992) isto get L, ambiguities fixed,
ionosphere free solution. First the widelane (L, —L,) am-
biguities will be resolved:

Ny_,=N;—N,or N,=N;-N;_, (2

whereN, and N,arethel, and L, ambiguities, respectively
and N, _, is the widelane ambiguity.

Resolved widelane ambiguitieswill bethenusedintheLc
solution for fixing narrow-lane (L,+L,) ambiguities:

Ny =N —aN, (3)
N =Ny —a(N; - N; ;) (4)

whereaisfrequencyratioof L, and L, signalsfor reduction
of ionospheric refraction.

Let usinterpret the random errors like accompanying with
noiselevel of thelinear combinations used plus from other
error sources and the systematic as shortening of the vector
length concurring with neglecting the affect of ionospheric
refraction. Determined by limited algorithms available in
PRISM software and taking the amount of vectors making
thechoicevector by vector impossibleinto account thecertain
bound between L ; d oneand Widelane solutionswas searched
i.e. balanced solution between noise level and ionospheric
refraction. The process overview in example of one areaof
thenetwork (denoted as2001ain Fig. 1) measured from July
to September in 2001 is brought out in the following.

— First al the possible vectors were calcul ated using both
theL , aloneand Widelaneal gorithm. Changesinformal
accuracies (RMS), in vector lengths and repeatabilities
between those mentioned sol utions were cal culated and
scattered in 1 km clusters. Determined by insufficient
amount of longer vectorsthe length in comparisonswas
limitedto 9km. InFig. 2—4the corresponding differences
are shown.

— Inthenext step several networkswerecombined including
thevector solutionscontaining L ,, Widelaneand combina-
tionsof themin 1 km steps. Selection of vectorswasmade
beforehand to formanetwork showninFig. 1. Networks
wereadjusted using software Global XAPositioning System
(Inpho Technology OY') keeping the coordinatesof | and
Il order netfixed. InFig. 5and 6 aposteriori relativeand
absolute accuracy estimation of different solutions are
presented.

— Thescalesof the particular network solutions cal cul ated
as described earlier were compared with those of | and
I order network. For that the so called minimally con-
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strained network adjustments were performed taking the
coordinates of only one point of the higher order net as
congtrained. The scale differences between fixed and
minimally constrai ned sol utionswere estimated then using
7 parameter HELMERT transformation, in Fig. 7 the dif-
ferencesare shown. Wenote herethat the scal e differences
between fixed and minimally constrained solutions were
incaseof | and 11 order network —0.004 ppm £ 0.001 ppm
and — 0.008 ppm £ 0.002 ppm, respectively.
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Fig. 2. Scatter of the formal accuracy as L, minus Widelane
solution
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Fig. 3. Differencesin length of vectorsas L, minus Widelane
solution.
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Fig. 4. Scatter of repeatability asL, minusWidelane solution.
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Fig. 5. Scatter of a posteriori relative accuracy including L,,
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Fig. 6. Scatter of a posteriori absolute accuracy including L,,
Widelane and balanced solutions.
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Fig. 7. Scatter of the scale differences compared with higher
order network containing L,, Widelaneand balanced sol utions.

For the shorter baselinesthe random errorsare dominating,
but starting from about 4 km the systematic errors became
dominating as could be recognized from the figures. Com-
parisons made for a posteriori accuracy from the network
adjustment show no significant improvement starting from
4 kmaswell. Based on comparisons made the bound 4 km
betweenL ; aloneand Widel ane solutionsapplicablefor this
part of the network was chosen.
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The SUNSPOT numbers
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Fig. 8. The monthly average SUNSPOT numbers, average of GPS satellites used (right and left in
thetop), formal accuraciesof thevector solutions(RMS), repeatability, a posteriori absoluteaccuracy
from the network adjustment and the estimated scal e difference between the Densificationand I, 11
order networks(fromtop to bottom). L, solutions (left) and bal anced sol utionsimplemented fromyear
1999 upward (right). With square the L1c/\WWidelane solution is denoted.
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4. TheSolar Cycleand theaccuracy char acte-
ristics of the network

The GPSmeasurementsof the Densification Network cover
amost al of the last Solar Cycle. The monthly average
SUNSPOT numbersstrongly correlated with solar flux and
another changed factor, theaverage number of GPSsatellites
used in vector calculations are shown in the top of Fig. 8.

Uptoyear 1999 no specia attentionwaspaid toionospheric
refractionin cal culation of GPSvectorsof theDensification
Network. All but one, areameasuredin 1993, werecal culated
usingL, signal only. ReasontouseL 1c and Widelanealgo-
rithmsin 1993 was arbitrary, not selected for reduction of
theionosphericrefraction. Balanced solutionslike described
in previouschapter wereimplementedtothenetwork areas
establishedinyear 2001. Limited by thetimeand economical
resourcesavailable, GPSvectorsof thenetwork areasestab-
lished earlier than 1999 were not recal culated, three areas
measured during the period from 1999 up to 2000 were ba-
lanced partialy taking theaverage scaledistortion—0.4 ppm
of the earlier measured surrounding areas as a reference.

For all eleven network areaswe havethe L, alone solution
withexception of year 1993 calculated using L 1cand Wide-
lanealgorithms, thebalanced sol utionsare availablefor the
last five. InFig. 8 the formal accuracies, repeatabilities of
doublemeasured vectors, aposterior accuracy estimations
fromthenetwork adjustment and estimated scaledifferences
comparing with scale of the | and Il order net are shown.
Asitiscommonly knowntheformal accuraciesreflect only
theinner consistency of thevector solutionand theinfluence
of many error sourcescorrelated intimeisnot showing up.
That can aso be detected in Fig. 8 where the higher noise
level associated with Lc and Widelane algorithms used in
1993 and therole of satellitesavailable areclearly visible,
but not the impact of ionospheric refraction. Correlation
between the accuracy characteristics and solar activity is
detectable on the others left hand sidefigures. In the same
time the introduction of balanced solutions improve both
thescal eand accuracy estimation (up to about 60 %) ascould
beindicatedintheright hand side of thefigures. Thenumber
of GPS satellites available and the lower accuracy of the
broadcast ephemerides appear to be dominating over the
ionosphericrefraction beforetheyear 1995. For better pre-
sentation of Fig. 8 the bounds between L ; alone and Wide-
lane solutions are shown in Fig. 9.

The differences between the scale distortions as from
comparisionwith higher order net minusfromcomparision
between L, alone and Widelane vectors are shown in Fig.
10for thenetwork areaswith corresponding sol utionsavai-
[able. Theagreement betweenthetwo scaledistortion estimar
torsisgoodingeneral. Thereliability of thetransformation,
impact of formed network, theinfluence of other error sour-
cessuchasorbital errorsand troposphericrefraction cause
the differences.
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Fig. 10. The differences between the scale distortionsasfrom
comparisionwith higher order net minusfromcomparison bet-
ween L, alone and Widelane vectors.

So far we were concentrated on asystemeatic shortening of
the GPS vectors alone. During the adjustment procedure
the scale error will be removed to some extent because of
control by higher order net.

The Densification Network was adjusted in two groups,
Estonian mainland and West-Estonian Islands, in 2001
(RUDJA 2001a, RUDJA 2001b). The residuals of the 6
parametersHEL MERT transformation (no scal e estimated)
between the constrai ned and minimally constrained adj ust-
ments of network with included balanced solutions in
Estonian mainland are presented in Fig. 11. Thescaledis-
tortion, about 12 cmin gross country scale, between those
two solutions as dominating shows up. Theresidual s after
applyingthe7 parameterstransformationwiththescaediffe-
rence estimation (— 0.4 ppm) areshowninFig. 12. Taking
thechangesintheresidual sbetween 6 and 7 parameter trans-
formationsand presentedin Fig. 10thedifferencesbetween
two scal edistortion estimatorsinto account we can conclude,
that the main part of the scale error is eliminated in cons-
trained adjustment. That isin caseof relatively densehigher
order network in Estoniawith averagedistance betweenthe
points 15 km.
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Fig. 11. Residualsof the 6 parametersHELMERT transforma-
tion, no scale difference estimated.
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Fig. 12. Residualsof the 7 parametersHELMERT transforma-
tion, scale difference estimated.

InFig. 13 and 14 the point displacementsin plane between
two constrained network adjustmentswithincluded L, alone
and balanced solution are shown for two network areas
measured in 2001. The changesin scalesbetween L, alone
and balanced sol utioninthose network partswere- 1.1 ppm
and - 2.1 ppm, respectively. In spite of the higher order
control thechanges, especialy inFig. 14, arestill significant
with respect of the precision estimation.

The scale distortion removal in a constrained adjustment
isdependent on geometry of both, thehigher order and den-
sification network. Inadditional comparison, not shownhere,
withthe samescaledistortion (- 1.1 ppm) betweenL , alone
and bal anced solutionfor both network areasthedifferences
were less but still bigger for the last.

The overal accuracy of the vector components of the
Densification Network based on 6112 vectorsmeasured twice
or morewasestimated. Thedifferenceswerecollectedinto
a1l km clusters and for each cluster the repeatability was
calculated. The length in calculations was limited to 9 km
duetosmall number of vectorsabovethislimit. Therepeata-
bilitiesare shownin Fig. 15, together with distance depen-
dent increase of the repeatability estimated by linear reg-
ression. The change in accuracy figures after about the 5

km, the average bound between L ; al oneand bal anced sol uti-
on, is slightly detectible. Despite the limited spectrum of
the length the values are relatively good base for a priori
accuracy estimation in the Large Densification Networks.
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Fig. 13. The point displacements in plane between two con-
strained network adjustments with included L, alone and ba-
lanced solutions, respectively.
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strained network adjustments with included L, alone and ba-
lanced solutions, respectively.

5. Conclusions

Taking themagnitude of the scaledi stortionsdiscussed into
account theamazing accuracy of the GPStechniqueshould
be pointed out.

High degree of automation, low time consumption in data
evaluation and possibilities to obtain reliable results in
general madetheuseof so called” hands-off” software pac-
kages common in computation of large densification net-
works. Because the limited possibilities for modelling of
different factorsaccompanying with GPS measurementsin
those packages we recommend to investigate the possible
systematic distortionsat |east in case of large networks. As
wasshown, theimpact of theionosphericrefractionisclearly
detectable even over therelatively short distances— 5km
inaveragein our study. Applying of someionospherefree
linear combination, starting from certain distance, couldim-
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provea posterior accuracy estimation up to 60 % and secure
from changes in coordinates over 3F level in case of high
ionospheric activity and weak higher order control. Together
withincreasein degree of ionisation thebound for mid-latitu-
desandtheantennacut-off angleof 15° (usedinour calcula-
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tions) between L, aloneand reduced for ionosphericrefracti-
on solutions changes from about 15 to 3 km. The accuracy
and the density of the higher order control in removing of
scale bias are important.
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Fig. 15. The overall repeatability of vector components based on 6112 vectors measured twice or more.
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