Proposal for the Development of an European Combined Geodetic Network (ECGN)

J. IHDE¹, J. ADAM², C. BRUYNINX³, A. KENYERES⁴, J. SIMEK⁵

Summary

In 1995, EUREF took over the task of the realization and maintenance of European vertical reference systems. The work started with the UELN project and one year later continued with the realization of the European Vertical Reference Network (EUVN). The EUVN is a static integrated network, at all EUVN points three-dimensional coordinates and geopotential numbers are derived. In addition the corresponding normal heights as well as the gravity values are provided. In the tide-gauge stations, the connection to the sea level is realized.

In order to ensure the long-time stability of the terrestrial reference system with an accuracy of 10^{-9} at both the European and global scale, the interaction between the different time dependent influences of the system Earth on the terrestrial reference system and the related observations has to be considered in the evaluation models.

The ECGN is a European network for the integration of time series of spatial/geometric observations (GNSS – GPS/GLONASS and in the future GALILEO), gravity field related observations and parameters (gravity, tides, ocean tides), and supplementary information (meteorological parameters, surrounding information of the stations e.g. eccentricities and ground water level).

The call for participation is, from the point of view of time, structured in two stages. The first call is directed to the implementation of the ECGN stations following the concept of the project. The ECGN stations have the standard observation techniques GNSS (GPS/GLONASS, GALILEO), gravity (super conducting gravimeter and/or absolute gravimeter), levelling connections to nodal points of UELN/EVRS, meteorological parameters.

Standard for the ECGN stations is a local network for the derivation of eccentricities at a 1 mm accuracy level in all three spatial components. The GNSS part of the observations gathered at the ECGN stations will be an integral part of the EPN (EUREF Permanent Network) and as such will have to fulfill the EPN guidelines.

In parallel to the first call, the ECGN working group will prepare the second call for the analysis and investigations. In the first step, the main action of the ECGN working group will be a pilot study of the combination of the different observations from the available stations, and this to get experiences in the combination of spatial information with gravity field related data. For super conducting gravimeter data, the GGP (Global Geodynamic Project) data centre could be used for data collection. ECGN levelling data will be collected at the UELN/EVRS data center. Local data centers for absolute gravity data and super conducting gravimeter data should be installed in the first stage by the ECGN working group.

Preamble

The principal task of the IAG Subcommission for Europe (EUREF) consists in providing European-wide solutions of a spatial reference system that can be used for both scientific purposes as or the georeferencing of common cartographic data, as urged by the geodetic and cartographic community of Europe. The initial action of EUREF was directed to the spatial reference by GPS. In 1989 EUREF has defined 1989.0 as the reference epoch of the European Terrestrial Reference System (ETRS89) and realized it as frames (ETRF.yy, yy means the year of reference) by densification and maintenance of the ITRF.

In 1995, EUREF took over the task of the realization and maintenance of European vertical reference systems. The work started with the UELN project and continued one year later with the realization of the European Vertical Reference Network (EUVN). The EUVN is an integrated spatial network: at all EUVN points three-dimensional coordinates and geopotential numbers are derived. In addition, the corresponding normal heights, as well as the gravity values are provided. In the tide-gauge stations, the connection to the sea level is realized. Finally, the EUVN represents a geometrical-physical reference frame. In 2002, the EUVN project has been closed successfully and EUREF started the prepare of a new phase (ADAM et al. 2000).

Since decades, there have been several initiatives to connect the reference frames of different geodetic techniques. For the geometrical reference, the real breakthrough was brought by the GPS technique. However, the reliable and accurate connection of this geometrical information with the physical

¹ Johannes Ihde, Bundesamt für Kartographie und Geodäsie, Richard-Strauss-Allee 11, D-60598 Frankfurt am Main, Germany, Tel.: +49 69 6333 206, Fax: +49 69 6333 425, E-mail: johannes.ihde@bkg.bund.de

² Jozsef Adam, Budapest University of Technology and Economics - Department of Geodesy and Surveying, P.O Box 91 H-1521 Budapest, Hungary, Tel.: +36 1 4633 222 Fax: +36 1 4633 192, E-mail: jadam@epito.bme.hu

³ Carine Bruyninx, Royal Observatory of Belgium, Av. Circulaire 3, B - 1180 Bruxelles, Belgium, Tel.:+32 2 373 0211, Fax: +32 2 374 98 22, E-mail: c.bruyninx@oma.be

⁴ Ambrus Kenyeres, FOMI Satellite Geodetic Observatory, P.O. Box 585, H-1592 Budapest, Hungary, Tel.:+36 27 374 980, Fax: +36 27 374 982, E-mail: Kenyeres@sgo.fomi.hu]

⁵ Jaroslav Simek, Geodetic Observatory Pecny, Ondrejov 244, CZ-251 65, Czech Republic, Tel.: +420 204 649235, Fax: +420 204 649236, E-mail: simek@pecny.asu.cas.cz

(height) reference system is not yet solved. In this sense, the EUVN represents the successful realization of a static geometrical-physical reference frame connection on a continental scale. The integration of all the geometric techniques would be desirable, where gravity must play a key role. In addition, the study of time evolution of the different reference frames and their related parameters (coordinates, gravity values etc.) would improve the knowledge about the connection itself (kinematic approach).

Within EUREF, the European Permanent Network (EPN) is since 1996 in operation, experiences with tide gauges are available, and EUREF started with the adjustment of repeated levellings (EVS 2000; AUGATH et al. 2000). In 2001, EUREF promised their participation of the EPN stations in the IGS GPS Tide Gauge Benchmark Monitoring Pilot Project (TIGA-PP) and the European Sea Level Service (ESEAS).

EUREF already in 1996 proposed, with the Resolution No 4 of the EUREF Symposium in Ankara, to perform absolute gravity measurements. The EUVN project included a subset of gravity values derived by connection measurements between EUVN stations and national gravity networks. The EVS project studied the possibility of using absolute gravity measurements for investigating height variations. But until now the Resolution is not realized.

Major absolute gravity projects within Europe in the last 15 years have been:

- national gravity networks (e.g. German Gravity Base net 1994 (DSGN94), measured with FG5-101 and JILAg-3, Austrian gravity base net measured with JILAG-6, Netherlands gravity base net measured with JILAg-3 and FG5-101, FG5-202);
- geodynamic networks (e.g. to monitor the Fennoscandic uplift (JILAg-5, FG5—102 (NOAA), FG5-101), or to monitor the rifting of Iceland (FG5-101, JILAg-3 and JILAg-5); Ardenne and Roer graben studies (FG5-202));
- sea level changes (e.g. tide gauge stations around UK (FG5-103), along the Mediterranean coast (SELF-project, FG5-101 and IMGC), or along the German coast (JILAg-3 and FG5-101));
- international gravity network (campaigns of US-NIMA within Eastern Europe in the 1990's, measured with FG5-107, FG5-101 and IMGC; the UNIGRACE-project from 1997 to 2001 with JILAg-5, FG5-101, JILAg-6, FG5-206 and ZZG);
- study of temporal variations of the gravity field with super-conducting gravimeter and absolute gravimeter time series (Bad Homburg, Wettzell, Moxa, Vienna, Membach, Medicina, Strasbourg, Metsähovi, Ny-Alesund).

Today's results show clearly that, only in conjunction, absolute and super conducting gravimeters constitute a tool able to achieve the : Gal-range in gravity measurements and they offer therefore a basis for research on secular gravity and height variations.

The proposal is to establish a EUROPEAN COMBINED GEODETIC NETWORK (ECGN) to combine the spatial and height reference system with Earth gravity field parameter estimation. It is in agreement with the planned IAG project of an Integrated Global Geodetic Observation System (IGGOS). (RUMMEL et al. 2000, RUMMEL 2000)

Description of the Proposal

Background

One of the fundamental development potentials of geodesy for the present and the near future lies in the improvement of the accuracy level and the increase of availability of the Earth's gravity-field-related height component. Whereas during the past 10 years positioning made dramatic progress in accuracy and operability, there was no substantial development in the Earth's gravity-field-related height components.

Today, GPS positioning is used for referencing basic geospatial data, and in conjunction with geoinformation systems GPS, has superseded traditional terrestrial methods of positioning in both science and practical applications, including the European administrative sectors. On the other hand, precise height determination, which is an integral component of geodetic positioning, continues to be based on classical terrestrial methods, which accuracies of 10^{-6} to 10^{-7} , falls short of three-dimensional GPS positioning by the order of two. Since the classical terrestrial methods are restricted to their respective continents, there is no standardized reference system of heights on the global level (figure 1).

In Europe, the reproduction cycle of the height reference systems takes about 30 years. Consequently, the height component from levelling for GPS positioning is not available with the same accuracy and operationally. This fact not only considerably impairs the referencing of geoinformation systems through GPS as to their overall efficiency, but also the performance of scientific kinematic and dynamic studies and investigations of the geosphere.

The contradiction in accuracy and operability between GPS positioning and the levelling of heights can be solved by using geoid solutions with an adequate accuracy (1 cm). They are used for reducing the GPS heights to heights referenced to the Earth's gravity field. The presently available geoid solutions are characterized by long- and medium-wave errors (> 100 km), which can be ascribed primarily to inhomogeneities of the different height systems, and also to the insufficient density and inhomogeneity of the terrestrial gravity data (figure 2, IHDE et al. 2000).

It is expected that the satellite gravity field missions CHAMP, GRACE and GOCE will bring a considerably improvement to the determination of the long- and mediumwave portion of the gravity field. The short-wave components of the Earth's gravity field, which in the long run ensures the continuity of 1 cm accuracy level on the local scales, also will have to be acquired by means of terrestrial gravity data.

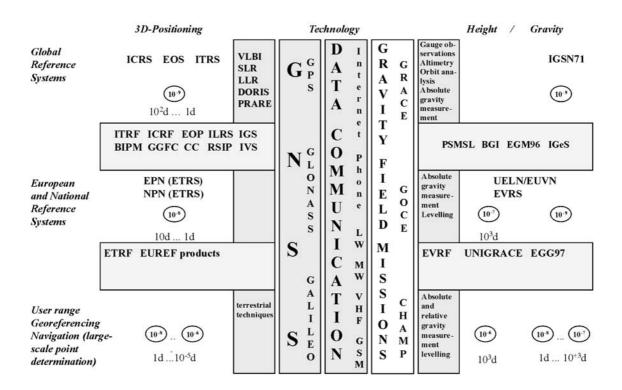


Figure 1: Positioning and Gravity

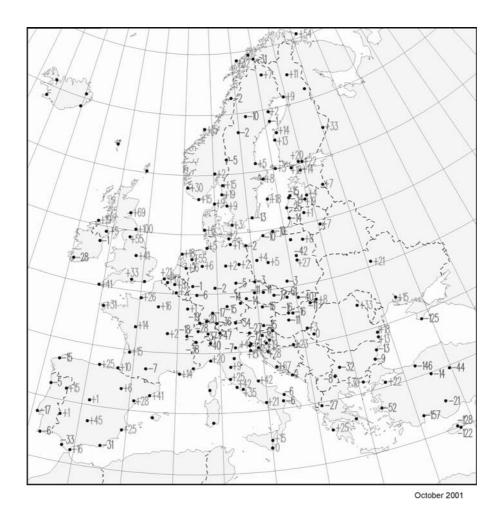


Figure 2: Differences between gravimetric heights $(z_{EGG97} + H_{EUVN})$ and GPS heights h_{ETRS89} in cm derived by the EUVN project

Therefore, it is necessary to combine the data derived from satellite gravity field missions with terrestrial gravity data, that have been reduced to a standardized height level. During a first phase, combinations of GPS observations and classical levelling measurements may serve to represent fiducial points for the combined solution.

The experiences within the EUVN project (IHDE et al. 1999) have shown the practical and methodological problems with

the combination of different geodetic observation techniques, especially geometrical and gravity field related data. To give an idea of this, the relations between ITRS/ETRS89 and EVRS (defined as a world height system (WHS) in the components conventions, parameters, and realization) are given in table 1 (IHDE et al. 2000, IHDE et al. 2002). For the combination of the spatial (geometrical) and Earth gravity related components a unique integrated reference system has to be defined and realized.

ITRS IUGG Resolution No. 2, Vienna 1991	WHS/EVRS IAG Subcommission for Europe, Resolution No. 5, Tromsø 2000
ori	gin
(Explicit) Geocentric, the center of mass being defined or the v	whole Earth, including oceans (Implicit) and atmosphere
orien	tation
Initial BIH orientation. No global residual rotation with respect to horizontal motions at the Earth's surface.	No necessary convention
units	-scale
SI unit meter The ITRS scale consistent with the Geocentric Coordinate Time (TCG)	SI units meter and seconds The scale of the Earth body W_o is approximated by the normal potential of the mean Earth ellipsoid U_o which includes the masses of the oceans and the atmosphere
coord	inates
quasi-Cartesian system X	potential of the Earth gravity field $W_p = W(X) = U_p + T_p \text{ (GPM)}$ $= W_o - C_p \text{ (Levelling)}$
system po	arameters
	mean Earth ellipsoid (U_0 , GM, J_2 , w)
realiz	zation
ITRF 2000 tide-free	EVRF 2000 (UELN 95/98, ETRS89, GRS 80) $W_p = W_{\text{NAP}} + C_p$ (Levelling), zero tidal system

Table 1: Relations between ITRS and EVRS/WHS (conventions, parameters, realization)

Figure 3 shows the heights of the mean sea level at the epoch 1997.5 above the GPS/levelling quasi geoid of the EUVN (WÖPPELMANN et al 2000). In Europe in many countries repeated levellings carried out, but they are not available in any case. The repeated levellings available in the UELN/ EVRS data base are represented in figure 4 (SACHER et al. 2002).

Table 2 shows the components of an integrated geodetic reference system and their dependence on the tidal systems.

It shows that a unique concept for the reduction of observations and related parameters is necessary. Only the origin of both is identically defined. For a height system, a zero level surface has to be agreed on. W_0 as zero level has the advantage that in regard to the semi-major axis and the flattening of the mean Earth ellipsoid it is independent from the tidal system. The main difference has to be considered at the realization: The ITRS/ITRFyy coordinates are given in the non-tidal system, the EVRS heights are given in the zero tidal system.

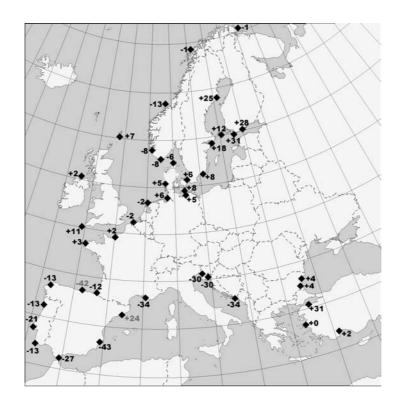
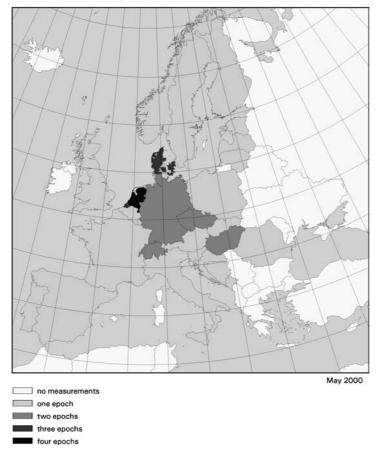



Figure 3: Heights of the mean sea level at the epoch 1997.5 above the GPS/levelling quasi geoid of the EUVN

Number of Epochs in the UELN/EVS - Data Base

Figure 4: UELN/EVRS data base with number of repeated levellings

	grav g/D	•		geoid W/N	levelling height DH	altimetry h	mean sea level msl	position X/h
Mean tidal system Mean/zero crust (Stokes is not valid if masses outside the Earth surface)	Dg	m		N _m	DH _m	Relation to N _m for oceano- graphic studies	h _{msl}	
Zero tidal system Zero/mean crust (Recommended by IAG Res. No. 16, 1983)	Dg _z	Stok	es	N _z (EGG97)	(EVRF2000) DH _z			
Non-tidal system Non-tidal crust (far away from the real earth shape – there is no reason for the non tidal concept)	Dg _z	Stok	es	N _z (EGM96)				X _n ITRFyy, ETRS89

Table 2: Components of an integrated geodetic system and their dependence from tidal systems

Gravity related components are given in a zero tidal system, conforming to the IAG Resolutions No 16 adopted in Hamburg in 1983 and to the handling of the gravity data. Contrary to this, the ITRFyy coordinates are given in the non-tidal system, the same holds for the global geopotential model EGM96. The European geoid was reduced to the zero tidal system. The non-tidal system/crust is far off the real Earth shape – there is no justification for the non tidal concept. The Stokes formula is not valid for the mean tidal system, but the mean sea level is reduced to the mean/zero geoid for oceanic studies.

Goals/ Project Objectives

Securing and maintaining the spatial reference frame for positioning and gravity-field-related heights, is one of the core tasks of EUREF. The strategic objective of this project is to realize an integrated geodetic reference frame for the entire territory of Europe.

In order to ensure the long-time stability of the terrestrial reference system with an accuracy of 10^{-9} at both the European and global scale, the interaction between the different time dependent influences of the system Earth on the terrestrial reference system and the related observation has to be considered in the evaluation models.

The availability of the reference frame for real-time and nearreal-time positioning needs a high sensitive modelling of the time dependent phenomena of the solid Earth, the Earth gravity field, the ocean, the atmosphere and the hydrosphere. The recording of relevant data to describe and model these phenomena is an integrated part of the maintenance of the terrestrial reference system.

The height is the most important component of the threedimensional positions of the participating ECGN stations is the height. However, in the regional or global terrestrial reference system, heights are less accurately determined than the horizontal components. This is due to the geometry and the properties of the (mostly spatial) observations which are sensitive to various systematic errors. Therefore, improvements can be expected from the careful combination of different spatial observation techniques (preferably at the observation level), such as GPS and Satellite Laser Ranging (SLR), collocated at the same sites, taking into account the strengths (and weaknesses) of each individual technique.

The complement of the geometrical positioning with the physical height component of matching accuracy, operability and efficiency needs the gravity and a high-precise geoid in the cm-accuracy range. The project contributes to gravity field modelling for the area of Europe and the generation of the best possible global model.

The planned activities aim to link the spatial reference system with gravity field related parameters in order to contribute to a consistent description of the general processes of the system Earth. These processes shall be kinematically integrated into a combined monitoring system of position and gravity. Products of the satellite gravity field missions will be combined with the data of the integrated geodetic terrestrial reference frame.

On the one hand, absolute gravity time series are key information for long time stabilization of height reference systems. On the other hand, gravity time series needs precise position information to extract position variations from gravity variations.

It is a matter of course that the European spatial reference system realized by the EPN is based on, resp. contributes to, global systems and therefore is also a component of the latter. Consequently, the entire project must be seen in the global context. The work on the integrated kinematic network must be understood as a European contribution to a global integrated geodetic network. EUREF wants to support with this project the activities towards an improvement of the European height reference system for scientific work and for the supply of relevant data to European authorities and institutions.

The analysis of GPS time series shows that the height component is not sufficient verified. The combination with other data with vertical information gives the possibility to stabilize the vertical velocities. The main technological aspect is the combination of time series of different techniques.

The project continues the tradition of the EUVN into a next stage. EUVN was especially related to the height component and the realization of a European kinematical height reference system with a continental accuracy of one cm by using time series of different observation techniques. For this it is necessary to consider the variation of the Earth surface and the gravity field.

The proposed ECGN may substantially contribute to meet the geodetic basic needs of the geoinformation sector within Europe. Moreover, in the course of the further development of the ECGN, the needs and requirements as well as the demands made on a DGPS Real-Time positioning service will be allowed for. Additionally ECGN could be a component of a future European disaster monitoring network. The tasks of the referencing geodata and geodynamic investigations require a precise spatial reference system in real-time or near-real-time which takes into account the complex interrelationships between the solid Earth and the ocean, the atmosphere, and the gravity field. Establishment of this network is carried out in accordance with the technological state of the art of positioning by means of satellite navigation systems and considers the foreseeable developments in the user strategies

Principles of Network Structure

The ECGN is a European network for the integration of the spatial geodetic reference frame (GNSS - GPS/GLONASS and in the future GALILEO), gravity field related parameters (gravity, tides, ocean tides), and supplementary information (meteorological parameters, surrounding information of the stations e.g. eccentricities and ground water level) in a kinematic mode.

ECGN is the frame for the integration of spatial reference and the gravity field, the guiding principle consisting in making available time series of the methods to be combined on all stations involved especially:

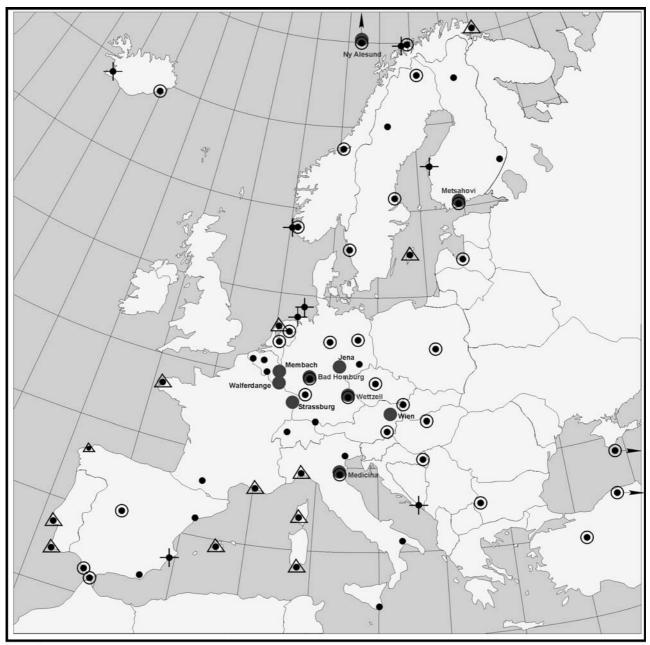
- Position through GNSS (GPS/GLONASS, GALILEO) with 10⁻⁹ and better – permanent,
- Gravity (absolute gravity measurements) with microGal
 repeated,
- Gravity field-related heights (linkage of levelling to the EVRS) with 1 mm/km – repeated.

On some selected stations the following data should be acquired in addition:

- Ocean tides and sea level changes (tide gauges at the European coast lines) – permanent,
- High-frequency gravity variations (measurements by means of super conducting gravimeter) – permanent,
- Vapour concentration in the atmosphere (vapour radiometer) – permanent.

Supplementary:

- Meteorological parameters permanent,
- Eccentricities, local control network- repeated,
- Groundwater gauges permanent.


About 65 stations of EUREF's GPS permanent network EPN fulfil the principles of the network structure (figure 5, table 3):

- 15 of them combine GPS and levelling,
- 37 of them combine GPS, levelling and absolute gravity,
- 10 of them are GPS/levelling/tide gauge stations and
- 8 of them are GPS/levelling/gravity/tide gauge stations.

It is proposed to qualify about 10 stations as core stations. Core stations should give the possibility to study the combination of different observation techniques and kinematical effects in case.

Local data centers for the gravity data and sea surface observations and combination research centers should be established.

The available infrastructure of EPN and UELN/EVRS should be left untouched but combined with new elements.

Legend:

- EPN station with GPS, and levelling
- EPN station with GPS, absolute gravity, and levelling
- EPN station with GPS, tide gauge, and levelling
- EPN station with GPS, tide gauge, absolute gravity (and levelling)
 - Distribution of superconducting gravimeter in Europe

Figure 5: Candidate Stations of European Combined Geodetic Network (ECGN) – Draft

Call for Participation

The call for participation is from the point of view of time structured in two stages. The first call is directed to the implementation of the ECGN stations following the concept of the project. In parallel the ECGN working group will prepare the second call of analysis and investigations. In the first step, the main action of the ECGN working group will be a pilot study of the combination of the different observations using available collocations at stations e.g. Medicina, Wettzell etc. and this to get experiences in the combination of spatial information with gravity field related data.

1st Call: Observation

This call concerns the elaboration of the observation network of ECGN stations. The ECGN stations have the standard observation techniques

- GNSS (GPS/GLONASS, GALILEO) permanent,
- Gravity (super conducting gravimeter and/or absolute gravimeter) permanent or repeated,
- Levelling connections to nodal points of UELN/EVRS
 repeated,
- Meteorological parameters permanent.

For the realisation of the EVRS, the connection to tide gauge projects and the recording of vertical changes between sea level and the solid Earth surface, it is necessary to include selected tide gauges (permanent) along European coast lines.

Standard for the ECGN stations is a local network for the determination of eccentricities at a 1 mm accuracy level in all three spatial components (repeated). All types of observation techniques at a ECGN station should be situated within a distance of about 1 km.

Optional are the establishment of ground water gauges at gravity stations and absolute gravity observations at tide gauge stations.

All ECGN stations are part of the EPN. For GNSS observations and data flow, the guidelines for EPN stations & Operational Centres (*http://www.epncb.oma.be/guidelin. html*) have to be fulfilled.

For super conducting gravimeter observations, the agreements and standards of the Global Geodynamic Project (GGP) are definite (*http://www.eas.slu.edu/GGP/ggpas. html*).

For absolute gravity measurements, agreements and standards are in preparation, including data formats for archiving (Annex 1).

The tide gauges have to be realized following the requirements of the Permanent Service of Mean Sea Level PSMSL (http://www.pol.ac.uk/psmsl/datainfo/contrib.html).

Methodology and Analysis (Second Call)

For super conducting gravimeter data, the GGP data centre could be used for data collection. Levelling data of ECGN will be collected at the UELN/EVRS data center. Local data centers for absolute gravity data and super conducting gravi-

meter data should be installed in the first stage by the ECGN working group.

In a second call it could be asked for

- Analysis centers for the combination of time series observations of all ECGN stations
- Combination of space techniques (GPS, VLBI, SLR)
- Methodical investigations for the combination of spatial observation data with gravity field-related data

Proposal

Proposals submitted in response to the 1st Call for Participation must include specific details on the technical support that will be offered by the organization and a management plan. These two main proposal sections will be used for proposal evaluation and to facilitate comparative analysis. Proposals must be signed by an official authorized to certify institutional support, sponsorship and management of the proposed activities.

To start with the project activities and the coordination of the project, a very stringent schedule is to be observed. Due to the importance of the project, groups may join at any time afterwards during the time of the project.

The Proposal must contain:

- Cover Page (see below),
- Proposal Summary,
- Description of Proposed Activities,
- Management Proposal,
- Financial Arrangements.

The Cover Page should contain: parent/funding organization, name and title of authorizing official, name and title of primary point of contact, mailing address, phone/fax/e-mail, cooperation organizations/institutes, signatures (the cover page should be signed both by the Authorizing Official committing the organization/institution to the proposal and the primary point of contact involved).

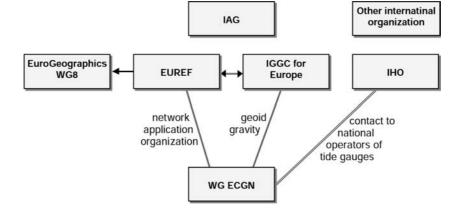
Deadline for the proposals is the 26. April 2003. Please send your proposal via postal mail to the EUREF chair and the EUREF Secretary:

For easier distribution to the reviewers, an additional e-mail version should be made available (in ASCII or attached Word file). Please send the email version to *ecgn@bkg.bund.de*

Proposals should not exceed 10 pages.

Proposal Evaluation and Selection

The principal criteria considered in evaluating the proposal are their relevance to the EUREF ECGN objectives, their intrinsic merit, and overall contribution to the service when compared to contributions available through other proposals. In addition to these criteria, management factors will be considered in the selection.


If ECGN decides to accept only a portion of the proposal, the submitting organization will be given the opportunity to accept or decline such partial acceptance.

Action plan of EUREF ECGN activities

- Appointment of the members of the ECGN WG Nov. 2002
- Call for participation stage 1 observation-Feb. 15, 2003
- Proposals stage 1 observation April 26, 2003

Organization

- Kick off meeting of the ECGN WG and Proposal evaluation and selection – May 2003
- Report to the EUREF symposium 2003 June 2003
- Call for participation stage 2 analysis Oct. 2003

References

- ADAM J., AUGATH W., BROUWER F., ENGELHARDT G., GURTNER
 W., HARSSON B. G., IHDE J., INEICHEN D., LANG H., AUGATH W., HARSSON B. G., LUTHARDT J., SACHER M., SCHLÜTER W., SPRINGER T., WÖPPELMANN, G.: BROWNER
 F., IHDE J., ENGELHARDT G., INEICHEN D.; Status and development of the European height systems; In: International Association of Geodesy Symposia; Vol. 121, Springer, Berlin Heidelberg 2000, pp. 55-60
- ADAM J., AUGATH W., BOUCHER C., BRUYNINX C., CAPORALI A., GUBLER E., GURTNER W., HABRICH H., HARSSON B.G., HORNIK H., IHDE J., KENYERES A., MAREL H., SEEGER H., SIMEK J., STANGL G., TORRES J.A., WEBER G.: Status of the European Reference Frame-EUREF. In: Vistas for Geodesy in the New Millennium, eds. J. Adam and K.-P. Schwarz, International Association of Geodesy Symposia, Vol. 125, pp. 42-46, Springer-Verlag, Berlin-Heidelberg, 2002.
- AUGATH W., ADAM J., BOUCHER C., IHDE J., NIEMEIER W., MIERLO J. V., MOLENDIJK R., SCHMIDT K., WINTER R.: EVS 2000 – Status and Requirements; In: Veröff. Bayer. Komm. Int. Erdmess., Bayer. Akad. d. Wiss., Astron.-geod. Arb., München, 2000, H. 61, pp. 96-98
- BRUYNINX C., KENYERES A., TAKÁCS B.: EPN Data and Product Analysis for Improved Velocity Estimation: First results. In: Vistas for Geodesy in the New Millennium, eds. J. Adam and K-P. Schwarz, International Associaton of Geodesy Symposia, Vol. 125, pp. 47-52, Springer-Verlag, Berlin-Heidelberg, 2002.
- IHDE J., ADAM J., GURTNER W., HARSSON B. G., SCHLÜTER W., WÖPPELMANN G.: *The concept of the European Vertical GPS Reference Network (EUVN);* In: Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Bad-Neuenahr-Ahrweiler, June 10-13, 1998, Publication No. 7, Volume II, Frankfurt a.M., 1999, pp. 11-22

- IHDE J., AUGATH W.: The Vertical Reference System for Europe; In: Veröff. Bayer. Komm. Int. Erdmess., Bayer. Akad. d. Wiss., Astron.-geod. Arb., München, 2000, H. 61, pp. 99-110
- IHDE J., ADAM J., GURTNER W., HARSSON B. G., SACHER M., SCHLÜTER W., WÖPPELMANN G.: The height solution of the European Vertical Reference Network (EUVN); In: Veröff. Bayer. Komm. Int. Erdmess., Bayer. Akad. d. Wiss., Astron.-geod. Arb., München, 2000, H. 61, pp. 132-145
- IHDE J., AUGATH W.: The European Vertical Reference System (EVRS), Its relation to a World Height System and to the ITRS; In: International Association of Geodesy Symposia; Vol. 125, Springer, Berlin Heidelberg 2002, pp. 78-83
- MAREL V.D. H.: Exploitation of Ground Based GPS for Numerical Weather Prediction and Climate Applications in Europe. In: Vistas for Geodesy in the New Millennium, eds. J. Adam and K.-P. Schwarz, International Associaton of Geodesy Symposia, Vol. 125, pp. 297-302, Springer-Verlag, Berlin-Heidelberg, 2002.
- MUELLER I.I., MONTAG H., REIGBER CH., WILSON P.: An IUGG Network of Fundamental Geodynamic Reference and Calibration Stations – Rationale and Recommendations. IAG/CSTG Bulletin, eds. G. Beutler, H. Drewes, H. Hornik., No.12., pp. 75-96, Munich, 1996.
- REINHART E., RICHTER B., WILMES H., ERKER E., RUESS D., KAKKURI J., MÄKINEN J., MARSON I., SLEDZINSKI J.: UNIGRACE-A project for the unification of gravity systems in central Europe. In: Proceedings of the Second Continental Workshop on the Geoid in Europe, eds. M. Vermeer and J. Ádám, pp. 95-98, Reports of the Finnish Geodetic Institute, 98:4, Masala, 1998.
- RUMMEL R., DREWES H., BOSCH W., HORNIK H.: Towards an Integrated Global Geodetic Observing System (IGGOS): In: International Association of Geodesy Symposia; Vol. 120, Springer, Berlin Heidelberg 2000, IAG Section 2 Symposium; 2000, 261 p.

- RUMMELR.: Global integrated geodetic and geodynamic observing system (GIGGOS); In: International Association of Geodesy Symposia; Vol. 120, Springer 2000, ppS. 253-260
- RUMMEL R., DREWES H., BEUTLER G.: Integrated Global Geodetic Observing System (IGGOS): A Candidate IAG Project; In: International Association of Geodesy Symposia; Vol. 125, Springer, Berlin Heidelberg 2002, pp. 609-614
- SACHER M., IHDE J., PARSELIUNAS E.: Status of the UELN/EVS data base: activities between June 2000 and May 2001 and future plans; In: Mitt. d. Bundesamtes f. Kartographie und Geodäsie, Frankfurt a.M., 2002, Bd. 23, pp. 146-153
- TORGE W., DENKER H.: The European Geoid-Development Over More Than 100 Years and Present Status. In: Proceedings of the Second Continental Workshop on the Geoid in Europe, eds. M. Vermeer and J. Ádám, pp. 47-52, Reports of the Finnish Geodetic Institute, 98:4, Masala, 1998.
- WÖPPELMANN G., ADAM J., GURTNER W., HARSSON B. G., IHDE J., SACHER M., SCHLÜTER W.: Status report on sea-level data collection and analysis within the EUVN project; In: Veröff. Bayer. Komm. Int. Erdmess., Bayer. Akad. d. Wiss., Astron.-geod. Arb., München, 2000, H. 61, pp. 146-153

ptbb0105	bogo0108	bork0110		ankr0103	alme0112	alac0201	ajac0002	acor0201	Logfile
Braunschweig	Borowa Gora	Borkum	Bad Homburg	Ankara/Turkey	Almeria	Alicante	Ajaccio	A Coruna	Site Name
PTBB	BOGO	BORK		ANKR	ALME	ALAC	AJAC	ACOR	Code
14234M001	12207M002	14268M001		20805M002	13437M001	13433M001	10077M005	13434M001	DOMES #
52.3	52,476	53.6	50,229	39,888	36,936	38,339	41,928	43,364	Lat.
10.46	21,035	6.747	8,611	32,759	357,541	359,519	8,763	351,601	Long.
130	150	54	190	975	127	60	66	67	Height (m) (Ellip)
0.1	0,000	0.1		0,060	3,044	3,035	0,000	3,042	Anthgt
DE	ЪГ	DE	DE	TR	ES	ES	FR	ES	Country
0	7	0	7	7	0	0	0	0	Position 0=coast 1=nearby >20km 2=inland
		0			2	0	1	0	Tide gauge 0=complete 1=incomplete 2=Station close
						ES01	FR01	ES05	EUVN-No (close to EPN Point)
	108,760			939,301	74,251	9.998	47.728	12.123	Normal-Height in UELN-95/98
1977; 1994; 2000	1980; 1992 ;1995; 1996; 1997; 2000	2001	time series	1996		1998			absolute gravity measurement
			yes						Super
							mobile		SLR
									VLBI
									other Technologies

Table 3: Candidate ECGN stations (Draft)

ebre9907	dubr0103	dres0105	dour0110	dent0001	ceut0111	casc9911	cagl0107	brus0103	brst0201	Logfile
	Dubrovnik	Dresden	Dourbes	Dentergem	Ceuta	Cascais	Cagliari – Astronomy	Brussels	Brest	Site Name
	DUBR	DRES	DOUR	DENT	CEUT	CASC	CAGL	BRUS	BRST	Code
13410M001	11901M001	14108M001	13113M001	13112M001	13449M001	13909S001	12725M003	13101M004	10004M004	DOMES #
	42,650	51	50,095	50,934	35,896	38,693	39,136	50,798	48,381	Lat.
	18,110	13.73	4,595	3,400	354,689	350,582	8,973	4,359	355,503	Long.
	454	203	283	64	52	77	238	150	22	Height (m) (Ellip)
	0,081	0.6	0,753	0,754	0,000	1,021	0,045	3,970	1,054	Anthgt
	HR	DE	FR	BE	ES	PT	IT	BE	FR	Country
	0	5	5	7		0	0	5	0	Position 0=coast 1=nearby >20km 2=inland
	0				2	0	1		0	Tide gauge 0=complete 1=incomplete 2=Station close
	HR03					PT02	IT11		FR04	EUVN-No (close to EPN Point)
57,708	5.347		236,643	19,518		12.147	14.681	104,437	53,301	Normal-Height in UELN-95/98
	1999; 2000	1994			1994; 1998			1995;1997 now own FG5		absolute gravity measurement
										Super
							permanent			SLR
										VLBI
										other Technologies

kiru0010	kely0110	karl0105	joze0104	joen0201	hofn0109	helg0103	graz0106	geno0202	penc0104	Logfile
Kiruna	Kellyville (Kangerlu)	Karlsruhe	Jozefoslaw	Joensuu permanent GP	Hoefn / Iceland	Helgoland Island / G	Graz- Lustbuehel	Genova – Istituto Id	FOMI Satellite Geode	Site Name
KIRU	KELY	KARL	JOZE	JOEN	HOFN	HELG	GRAZ	GENO	PENC	Code
10403M002	43005M001	14216M001	12204M001	10512M001	10204M002	14264M001	11001M002	12712M002	11206M006	DOMES #
67,857	66,987	49,011	52,086	62,391	64,267	54,175	47,067	44,419	47.8	Lat.
20,968	309,055	8,411	21,033	30,096	344,802	7,893	15,494	8,921	19.28	Long.
0	231	183	141	114	82	48	538	137	292	Height (m) (Ellip)
0,062	0,076	0,065	0,198	0,000	0,051	0,065	1,964	0,000	0	Anthgt
SE	DK	DE	PL	FI	IS	DE	AT	IT	HU	Country
7		5	7	5	I	0	2	0	7	Position 0=coast 1=nearby >20km 2=inland
						0		1		Tide gauge 0=complete 1=incomplete 2=Station close
								IT05		EUVN-No (close to EPN Point)
			110,244	96,694			490,925	4,014	248.387	Normal-Height in UELN-95/98
1995	1995; 1996; 1997; 1998;1999	1988; 1993; 1994; 1995	time series Jozefoslaw	1999	1997; 1998	1997; 2001	1998; 2001		1998; 2000	absolute gravity measurement
										Super
										SLR
					mobile (1992)					VLBI
					PRARE (permanent)					other Technologies

medi0104	mate0201	mars0201	madr0006	mad29911	mar60201	lago0005	kosg0103	klop0105	kir00201	Logfile
Medicina (BO) – Radi	Matera	Marseille	Madrid Deep Space Tr	Madrid Deep Space Tr	Maartsbo	Lagos	Kootwijk Observatory	Kloppenheim	Kiruna	Site Name
MEDI	MATE	MARS	MADR	MAD2	MAR6	LAGO	KOSG	KLOP	KIR0	Code
12711M003	12734M008	10073M008	13407S012	13407S012	10405M002	13903M001	13504M003	14214M002	10422M001	DOMES #
44,520	40.6	43,279	40,429	40,429	60.6	37.1	52,178	50,220	67.9	Lat.
11,647	16.71	5,354	355,750	355,750	17.26	351.3	5,810	8,730	21.06	Long.
50	535	62	0	0	75	63	98	222	498	Height (m) (Ellip)
0,000	0.1	0,070	0,025	0,025	0.1	0	0,105	0,069	0.1	Anthgt
IT	IT	FR	ES	ES	SE	PT	NL	DE	SE	Country
5	5	0	5	2	1	0	5	5	2	Position 0=coast 1=nearby >20km 2=inland
		0			2	0				Tide gauge 0=complete 1=incomplete 2=Station close
		FR06				PT05				EUVN-No (close to EPN Point)
	490.042	12.394	762,103		50,728	2.597	53,589		469,536	Normal-Height in UELN-95/98
time series since 1996			1989; 1998; now own FG5	1989; 1998; now own 'FG5	1993; 1995		1991; 1996	time series Bad Homburg?	1995	absolute gravity measurement
yes										Super
	permanent									SLR
	permanent									VLBI
	PRARE									other Technologies

osje0104		onsa0201	nyal9909	nya10005	noto9906		mopi0201	mets0105		Logfile
Osijek Onsola	Onsola		Ny-Alesund	Ny-Alesund	Noto – Radio- astronomy	Moxa	Modra-Piesok	Metsahovi	Membach	Site Name
OSJE ONSA	ONSA		NYAL	NYA1	NOTO		MOPI	METS		Code
11902M001 10402M004	10402M0	04	10317M001	10317M003	12717M003		11507M001	10503S011		DOMES #
45.6 57.4	57.4		78,930	78,920	36,876	50,645	48.4	60,218	50,617	Lat.
18.68 11.93	11.93		11,865	11,870	14,990	11,616	17.27	24,395	6,000	Long.
154 47	47		0	83	0	455	579	95	250	Height (m) (Ellip)
0.1 1	1		5,216	0,000	0,000		0.1	0,000		Anthgt
HR SE	SE		ON	NO	IT	DE	SK	FI	BE	Country
2	1		0	0		2	2	1	5	Position 0=coast 1=nearby >20km 2=inland
				н				7		Tide gauge 0=complete 1=incomplete 2=Station close
										EUVN-No (close to EPN Point)
9.129	9.129				84,441			75,986		Normal-Height in UELN-95/98
2000 1993; 1995; 1995; 1998	1993; 19 1998	995;	1998; 2000; 2001	1998; 2000; 2001 time series			1998; 2000	time series	time series	absolute gravity measurement
				yes		yes		yes	yes	Super
				yes				permanent		SLR
permanent	perman	ent						mobile (1989); permanent under construction		VLBI
GLONASS / GPS	GLONA GPS	/ SS		DORIS; PRARE				DORIS (permanent), SG		other Technologies

reyk0105 Reykjavil	RIGA
	nent GPS
REYK	RIGA REY
10202M001	12302M002 1020
64,139	56.9 64,1
338,045	24.06 338,
93	35 93
0,068	0.1 0.00
IS	LV IS
0	0
1	2
REYK	RI
	14.017
1988; 1997	1995;1996
	permanent
DORIS (permanent)	

upad0111	tron0001	trds0010	trom9911	tro19909	trab0104	tou19906	thu19908	ters0103		Logfile
	Trondheim	Trondheim	Tromsoe	Tromsoe	Trabzon / Turkey	Toulouse	Thule AFB, Greenland	Terschelling	Strasbourg	Site Name
	TRON	TRDS	TROM	TR01	TRAB	TOUL	THU1	TERS		Code
	10331M001	10331M001	10302M003	10302M006	20808M001	10003M004	43001M001	13534M001		DOMES #
	63,371	63,371	69,663	69.7	41	43.6	76.5	53,363	48,622	Lat.
	10,319	10,319	18,940	18.94	39.78	1.481	291.2	5,219	7,685	Long.
	0	318	0	142	66	0	55	56	180	Height (m) (Ellip)
	5,546	5,546	2,475	0	0.1	0.63	0	0,000		Anthgt
	NO	NO	ON	NO	TR	FR	DK	NL	FR	Country
						7		0	7	Position 0=coast 1=nearby >20km 2=inland
		7	1		7			н		Tide gauge 0=complete 1=incomplete 2=Station close
_			TROM					TERS		EUVN-No (close to EPN Point)
						157,740		14,718		Normal-Height in UELN-95/98
	1995; 1998	1995; 1998	1992; 1993; 1995; 1998	1992; 1993; 1995; 1998	1996		1988		time series	absolute gravity measurement
									yes	Super
										SLR
				mobile (Aug- 1997)						VLBI
				SATREF						other Technologies
		_	-							

Zimmervald Zenchuks- inversion Wettself, synchesis Wettself, wettensis Wettself, synchesis Wettself, wettensis Wettself, wetten Wetten Wetten <th< th=""><th>zimm9908</th><th>zeck0107</th><th>wtzr0108</th><th>wsrt0105</th><th></th><th>vis00201</th><th>vil00201</th><th></th><th>vard0001</th><th>vaas0201</th><th>Logfile</th></th<>	zimm9908	zeck0107	wtzr0108	wsrt0105		vis00201	vil00201		vard0001	vaas0201	Logfile
Image: line integration of the integration of	immerwald +T 88	Zelenchuks- kaya/Rus	Wettzell / Germany	Westerbork Synthesis	Walferdange	Visby	Vilhelmina	Vienna	Vardoe	Vaasa permanent GPS	Site Name
(004) 12351M001 13306M005 13306M005 13306M001 13306M001 13337 10423M001 14304M001 14304M01 14304M0	IMM	ZECK	WTZR	WSRT		0SIV	VIL0		VARD	VAAS	Code
	4001M004	12351M001	14201M010	13506M005		10423M001	10424M001		10322M002	10511M001	DOMES #
5 41.565 12.88 6.605 6.613 18.37 6.56 16.36 16.358 107 66 86 295 80 40 101 12 RU DE 0.1 0.3890 1.1 101 12 12 RU DE 0.1 0.3890 1 1 1 1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 5 2 2 2 2 2 3 3 5 2 2 2 3 3 3 3 8 1 1 1 1 1 3 3 8 1 1 1 1 1 3 3 8 1 1 1 1 1 3 3 8 1	6,877	43,288	49.1			57.7	64.7	48,249	70,336	63	Lat.
	,465	41,565	12.88			18.37	16.56	16,358	31,031	21.77	Long.
	57	1167	666		295	80	450	192	0	58	Height (m) (Ellip)
RUDENLLUSEAT2222222222222222222228772222228775540,47254,84620,32194619,33940,74754,846420,32171941994time series1991,1996time series2194time series1991,1996time series99nament \cdot <		0,045	0.1	0,389		0.1	0.1		5,512	0	Anthgt
2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Н	RU	DE			SE	SE	AT	NO	FI	Country
111 <td></td> <td>7</td> <td>7</td> <td></td> <td></td> <td>0</td> <td></td> <td>7</td> <td>0</td> <td>1</td> <td>Position 0=coast 1=nearby >20km 2=inland</td>		7	7			0		7	0	1	Position 0=coast 1=nearby >20km 2=inland
Image: line seriesVISOVISO1994619.33940,74754.84620.3211994time series1991; 1996time series20.3211994time series1991; 1996time series20.3211994time series1991; 1996time series24.661994time series1991; 1996time series1994time series1991; 1996time se						_			0	1	Tide gauge 0=complete 1=incomplete 2=Station close
619.339 40,747 54.846 420.321 1994 time series 1991; 1996 time series 1994 time series time series time series <td< td=""><td></td><td></td><td></td><td></td><td></td><td>VISO</td><td></td><td></td><td>NO12</td><td>VAAS</td><td>EUVN-No (close to EPN Point)</td></td<>						VISO			NO12	VAAS	EUVN-No (close to EPN Point)
1994time series1991; 1996time seriesNoteyesyesyesNoteyesyesyesPermanentyesyesyesPermanentyesyesyesPermanentyesyesyesPermanentyesyesyesPermanentyesyesyesPermanentyesyesyesPermanentyesyesPermanentyesyesPermanentyesyesPermanent<	06,877		619.339	40,747		54.846	420.321		3.042	40.382	Normal-Height in UELN-95/98
yes yes permanent image: state		1994	time series		time series					1995; 1999	absolute gravity measurement
			yes		yes			yes			Super
bermanent	ermanent		permanent								SLR
			permanent								VLBI
											other Technologies