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Abstract

Time series of coordinates of permanent GPS stations are
expected to exhibit a steady, linear trend in response to
tectonic forces. This trend is, in fact, observed, but it is
accompanied by a variety of signatures, so that the
overall spectral properties of the de- trended, zero- mean
time series differ from that of a random signal, especially
in the medium (~fraction of a year) to long (several
years) period. The time series of the coordinates of 30
permanent GPS stations in the Alpine Mediterranean area
with time spans from one to five years are presented. The
power spectral densities demonstrate that colored noise,
mostly flicker phase and -more occasionally- random
phase walk noise,  can be present at low frequencies,
typically below five cycles per year, while at higher
frequencies the spectrum tends to a regime of white
noise. We use this statistical information to obtain
estimates of station velocities and of their uncertainties.
Following an approach well known in the analysis of
time series of frequency standards, the stability of each
time series is computed as a function of time, in the sense
of a two-samples  Allan variance. The power spectral
density of the time series is used to infer the change in
the slope, with 1σ  probability, of two consecutive, equal
length batches of a given time series, as a function of the
length  of the batch. The power spectral density of each
time series is then converted into the autocorrelation,
which measures the statistical dependence of samples of
a same process, measured at different times, as a function
of the time lag. Taking into account the correct time
correlations among the samples, the slope of each time
series is estimated by least squares. In all cases, the Allan
variances are found to be larger, up to a factor of one
hundred, than the variances obtained by least squares
under the assumption of pure white noise. Stations with
only one year tracking history and a 'pure white noise'
formal velocity error of ~0.1 mm yr-1 have a velocity
uncertainty, in the sense of Allan variance, of 2 - 3 mm
yr-1, which drops to 0.6 - 0.7 mm yr-1 with a five years
tracking history. For stations whose horizontal
coordinates have large (i.e. of the order of up to some
millimeter) annual or semi annual oscillations, the
autocorrelation has secondary peaks at corresponding
lags and the final estimate of the slope can differ of up to
1 mm yr-1, relative to the value which would be obtained
assuming uncorrelated samples. We conclude that the
reason for the velocity uncertainty estimated by standard
least squares being unrealistically small is the neglect of

the cumulative effect of uncorrelated and correlated
noise. Contrary to earlier investigations based on limited
data sets, we find that the velocity uncertainty does
decrease as the time series increases, but this behavior is
evident for time series of ~3 or more years. We estimate
the scale factor to be 10.6 mm for the north component
and 6.4 mm for the east component. These values are, as
for the velocities, larger than the average formal
uncertainties in station coordinates obtained by least
squares, but again are probably more realistic, on account
of the non random character of noise.  The estimates of
the velocities and uncertainties of the permanent stations
obtained by spectral analysis form the basis for a
subsequent investigation of the present-day, large scale
strain rate field in the Alpine Mediterranean area, which
is implied by these scattered surface displacements.

Introduction

Temporal changes of  the coordinates of geodetic stations
have formed the basis of important contributions in
geophysics and astronomy.  In the era of plate tectonics,
changes in the coordinates of  satellite and VLBI stations
have provided direct confirmation of the lithospheric drift
implied by time series of magnetic lineations in oceanic
crust near areas of active seafloor spreading. Geodesists
and geophysicists now face the challenge of
understanding quantitatively deformations of the upper
part of the crust by correlating in time and space changes
of coordinates of networked geodetic stations. Because
the non co-seismic horizontal velocity gradients are
expected in the order of some mm yr-1 for distances of the
order of some hundreds of km,  each time series must be
very carefully examined before attempting to connect
temporal changes of coordinates and the state of strain of
the underlying  crust. In addressing the problem of
monument instability in geodetic networks measured
with ground techniques, Langbein et al. (1995) and
Johnson and Agnew (1995) have pointed out the
existence of colored noise in time series. Johnson and
Agnew (1995) have emphasized the relevance that
temporal correlations have in the measurement of site
velocities, and the fact that the variance of the velocity
estimates does not necessarily decreases with the
increasing number of data points, as it would be expected
in the case of uncorrelated data. Langbein and Johnson
(1997) have estimated that the seasonal effects are not
larger than 3 mm and shown that in small size networks
(10 - 20 km) the spectrum of the changes in length of
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baselines resembles that of a random phase walk, i.e.
proportional to the inverse frequency squared. The time
series are relatively short, no more than three years,  and
the distance measurements are affected by atmospheric
gradients along the line of sight, unless two-wavelengths
electronic distance meters are used. Large scale networks
formed by permanent GPS stations in continuous
operations have been addressed by Zhang et al. (1997)
and Mao et al. (1999).  They showed in a number of
examples that the noise spectrum in the coordinate time
series consisted of white noise plus flicker phase and/or
random phase walk noise, in amounts varying from
station to station, and used a Maximum Likelihood
Estimator (Langbein and Johnson, 1997) to make
estimates of the velocity error. Earlier literature in the
subject of noise in time series provides extensive
theoretical developments. For example, the fact that the
logarithm of the power spectral density is nearly a linear
function of the logarithm of the frequency is a  property
of  the time series of phase data delivered by atomic
clocks. In some cases the knowledge of the spectral
index, i.e. the slope of the power spectral density vs.
frequency on a log log basis, is typical of a physical
process. For example, shot noise due to the random
arrival of particles at a detector in atomic beam devices is
described by a random walk of phase, and the associated
noise is proportional to the thermal noise and inversely
proportional to the square of the quality factor Q of the
oscillator. The problem of determining the stability in
frequency of an atomic oscillator, as discussed by Allan
(1966) or Barnes (1966), has several analogies with the
stability of a time series of coordinates of a continuously
operating GPS station. In this paper the noise properties
of time series of coordinates of permanent GPS stations
are examined, with the intention to derive velocities and
estimates of their uncertainties. After discussing the data
used to construct the time series and to align the network
to the conventional terrestrial datum, the spectrum of
each coordinate time series is computed and the spectral
properties of the low frequency part (frequencies lower
than ~ 6 cycles per year) are shown to be consistent with
white or flicker phase noise, less frequently with random
walk of phase noise, while the high frequency part is very
nearly described by white phase noise.  The stability of
the time series is introduced in the sense of two sample
Allan variance and the uncertainties of the velocities -in
the sense of slope of time series- are computed
accordingly. The knowledge of the power spectral
density is also used to compute the autocorrelation of the
time series. The non diagonal a priori covariance of the
data entering the coordinate time series is constructed on
the basis of the autocorrelation function. The velocity
estimates are obtained with proper  consideration of the
time correlated nature of the samples.

Data Reduction

Permanent GPS stations with a tracking history from one
to five years are considered. Most of them are part of the
European Permanent Network (EPN), and the rest are
permanent stations operating on similar quality standards.
The data consist of  weekly SINEX (Software
Independent Exchange Format) files, each containing

adjusted coordinates and the associated variance -
covariance matrix,  obtained from three different sources
(Table 1). The EUREF SINEX files result from a weekly
combination done at the Bundesamt fuer Kartographie
und Geodaesie (BKG) in Frankfurt on overlapping
subnetworks processed by 12 Associate Analysis Centers
and forming the European Permanent Network (EPN)
(Bruyninx, 2000; Becker et al., 2000). Within the
EUREF-EPN activities, each permanent GPS station is
processed weekly by three or more EUREF Local
Analysis Centers, and the resulting partial SINEX files
are submitted to BKG for combination into one, weekly
SINEX file for the entire EPN. The additional SINEX
files listed in Table 1 include permanent GPS stations
which are not part of the EPN but operate on comparable
standards The 'densification' stations used in this work
are located in Austria and Italy. The SINEX files of the
Austrian stations are computed by the Observatory of
Graz, and those of the Italian stations by the University
of Padova. The  resulting  SINEX files are fully
compatible with the EUREF SINEX files. EUREF
stations common to the three data sets provide the
necessary overlap to link the national networks together
and to the European Permanent Network. The velocity
datum is defined by the ITRF97 velocities of
conventionally selected stations. ITRF97 was preferred to
the more recent ITRF2000 because virtually all the data
reduction, including the reference precise orbits and
Earth Orientation Parameters computed by the
International GPS Service for Geodynamics (IGS), has
been done with reference to the former. On the other
hand, the ITRF2000 velocities of the stations in Table 2
differ negligibly from their ITRF97, given the long
period of activity. The alignment of the network to
ITRF97 is realized by stacking the weekly normal
equations and constraining the velocities of  such
conventionally selected reference stations to their
ITRF97 values. These stations, listed in Table 2 together
with their assumed ITRF97 horizontal velocities, are part
of those normally used to align the European Permanent
Network to the ITRF.

Determining a Noise Model for the Time
Series of Station Coordinates

The velocities of the individual stations are least squares
estimates of the slope of the time series of the
coordinates, obtained with the program ADDNEQ, which
is part of the Bernese v. 4.2 software (Beutler et al.,
1996). Each time series was checked against the logsheet
of the station to identify discontinuities related to antenna
change or other documented events. As a rule, whenever
a change was documented, we tested the discontinuity by
solving for new coordinates of that station, while
imposing the same velocity. The same procedure was
then applied to test undocumented discontinuities, i.e.
discontinuities in the coordinate time series without a
counterpart in the station logsheet. The results are in
Table 3. The time series are modeled by a straight line:
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Most of the data reduction programs estimate by least
squares v0  under the assumption that the residual noise
x(t) is white. However Langbein and Johnson (1997)
have noted that  if the assumed noise model consists only
of white noise, the least squares uncertainties in the
velocity will tend to underestimate the true uncertainty.
Consequently, the uncertainty in implied strain rate -
essentially the horizontal gradient of the velocity - would
also be scaled over-optimistically. To estimate the best
fitting velocity and associated uncertainty with an
appropriate noise model, we follow, with modifications
to be explained later,  the approach of Zhang et al. (1997)
and Mao et al. (1999), and compute one-sided noise
spectra Sx(f) of the time series for each horizontal
coordinate of each station. The spectra tend to be  'flat'
(i.e. dominated by white phase noise) in the high
frequency part, in the sense of frequencies higher than,
say, one cycle every six months, whereas colored (i.e.
frequency dependent ) noise dominates the low frequency
part. This spectral behavior of coordinate time series is
common -although on a different scale of frequencies- to
other, physically different  processes where time series
are involved, and is crucial in assessing the stability of a
time series, that is the property of resisting changes in its
rate (Vessot, 1976, ch. 5.4).  The stability in phase and
frequency of atomic oscillators, for example, has been the
subject of detailed studies already in the late 50's and 60's
(Barnes, 1966; Spilker, 1977, ch. 12). Borrowing from
this well developed approach, the one-sided power
spectral density can be approximated by a linear
combination of power laws:

where the amplitude of each noise term k -i  are estimated
by least squares fit of the model in eq. 2 to the spectrum
of the de-trended, zero-mean time series of station
coordinates. The spectral density is one way of
describing the stability. A time domain description is the
sample variance of fractional frequency variations. The
average velocity over an interval T at time tk is

where k=1,2,… is the sample number. When N
consecutive samples are measured, each of duration
T,  the variance of the ensemble is known as the Allan
variance (Allan, 1966):

where the brackets denote infinite time average. The
Allan variance represents in the time domain another
definition of stability in the rate of change of the time
series. Because of the existence of processes causing this
variance to diverge for large N, Allan (1966) suggested
the introduction of the two sample (i.e. N=2) variance :

This is the variance factor of the probability of a change
in rate (eq. 3) from one portion of the time series to the
next consecutive, both being of length T.
The one - sided spectrum of a time series of coordinates
Sx(f) is related to that of the rate of change  Sy(f) of the
time series by  the equation Sy(f)=(2πf)2Sx(f). The relation
between the two sample Allan variance and the spectral
density Sx(f)  of the time series is obtained assuming a
stationary process (i.e. the time average of the ensemble
is not affected by a time translation)  and that <yk>

2=0
(i.e. we are considering departures from the average rate
of change):

E[]  denotes the expectation value. Hence the variance of
the average rate of change depends on the autocorrelation
Rx() of the  coordinate jitter x(t). Using the Wiener -
Khinchin Fourier Transform relationship between the one
- sided spectral density of a random signal and its
autocorrelation function (ω=2πf):

we finally obtain the expression of the two samples Allan
variance of a time series with spectrum Sx, as a function
of the time T:

For a band limited process with high-frequency fh it can
be shown that the relation between the two sample Allan
variance and the components of the spectral density
described in (eq. 2) is (Spilker, 1977, Vessot, 1976):
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• i=4 (random walk of frequency):
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The equations above with i=0 and i=2 have also been
obtained by Zhang et al. (1997) (their eq.s A23 and A30,
respectively). They are defined by the total time span T
and by the highest frequency  for which the noise model
is valid. Note that for i=3 and 4, the Allan variance is
independent of, and respectively increases with the
integration time. Once the amplitude h-i of the noise
component with the spectral index i has been determined,
the uncertainty in the slope of the coordinate time series
coming from the corresponding noise process can be
estimated, and the total velocity variance (eq. 8) be
approximated by the sum of the variances of the
individual (white + colored)  noise components. This
split of the total variance into its potentially several
components must however be considered with some
caution. Previous studies (Zhang et. al. 1997; Mao et al.
1999; Calais, 1999) have shown that  the combination of
white noise and only one of the colored terms can be
considered, for reasons apparently of numerical stability
of their Maximum Likelihood Estimator, especially in the
presence of relatively short time series and of colored
noise.

Estimating station velocities and their
uncertainty

The noise model affects not only the variance but also the
least squares estimated velocity, in each direction. The
vector form of eq. (1) is:

where X0 is the time-series of the coordinates, A is the
partial derivative matrix of the linear regression, Z is the
two-dimensional vector of the unknown intercept and
velocity, and ε(t) is the noise vector with elements x(t) .
The  covariance matrix of the residuals of the epoch
coordinates relative to the best fitting straight line can be
decomposed into  the sum of a white noise, nearly (not
fully, because of the finite bandwidth) time independent
term, and of  one or more time - dependent terms, related
to colored noise (Langbein and Johnson, 1997). For
uncorrelated noise, the covariance of the noise is a
diagonal matrix, where each diagonal element is
proportional to the variance of the individual estimated
coordinate. Time correlated noise will result in a non-

diagonal covariance matrix. The detailed knowledge of
the covariance of the noise  is necessary for estimating
the velocity with the correct noise statistics. We use the
normalized autocorrelation ρx(T)=Rx(T)/Rx(0), T being
the lag between any two data points, as an estimate of the
covariance of the measurements. By standard least
squares formulae:

and the variance of the velocity is :

The mean variance σ0
2 of the coordinate estimates can be

obtained a posteriori by combining eq.s (8) and (11).

Numerical results

This section shows how the mathematical approach
outlined in the previous section has been applied to
examine the time series of a number of permanent
European stations. Table 4 summarizes the numerical
results. For each station we give the total time span in
years, the number of data points, each point representing
one week of data, the r.m.s. (root mean square) spread of
the residuals of the coordinates relative to a best fitting
straight line. The following two columns give the noise
model appropriate for the low frequency part (< 6 cycles
yr-1; white phase noise always applies to higher
frequencies) of the power spectral densities of the
coordinate time series, according to the classification in
eq.2, for the north and respectively east coordinates. The
estimated slopes have been rounded to integers, as we do
not see at the moment the need to introduce the concept
of fractal (i.e. non integer) spectral index discussed by
Zhang et al. (1997). The next two columns specify the
uncertainties in the velocity estimates, in the sense of
square root of the two samples Allan variance, computed
from the spectra with eq.8, via numerical integration. The
final two columns give the estimated contribution to the
velocity estimates resulting from correlated noise (eq.10)
in the north and east time series. Figures 3 to 6 exemplify
the numerical results for four stations which we consider
typical cases. Part a) of each figure gives the de-trended
north and east time series (left column) and the
corresponding power spectral densities. These have been
computed  by means of the PSD function in the program
MATLAB v.5 using Hanning windowing over a number
of points equal to the total available data, after having
padded with zeros the missing data points, to ensure
equal intervals. We have, however, verified by direct
computation that the slope of the low frequency part is
unchanged by using different windowing, e.g. rectangular
windowing. Part b) of figures 3-6 shows the
autocorrelation functions of the north and east
coordinates computed from the corresponding power
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spectral densities according to eq. 7, and used in eq. 10 to
yield the ∆v corrections listed in the last two columns of
Table 4. Finally we plot the square root of the two
samples Allan variance (eq.8) as a function of the length
of the batch T. Thus the knowledge of the power spectral
density enables us to predict when, according to the
spectral characteristics of the available series, a specified
uncertainty in the velocity can be reached. In Figure 7 we
make reference to eq. 11 and correlate the root of the
Allan variances of the available stations with the square
root of the (2,2) element of  the variance covariance
matrix of the linear regression, to infer a posteriori
values σ0 of the mean uncertainties of the north and east
coordinates which are input to the linear regression. The
scatter is considerable but the different slopes indicate
that the north coordinates have a typical unit variance
(square rooted) σ0 of 10.6 mm, some 80% larger than the
corresponding term for the east coordinates, 6.4 mm.
Figure 8 shows the correlation between the root of the
Allan variance and the inverse square root of the data
points in the time series. There is a clear tendency of the
square root of the Allan variance to decrease with
increasing data points. This fact suggests that white or
nearly white (i.e. flicker phase) phase noise processes are
dominant in our time series. Had colored noise been
important in our time series, then there would have been
no guarantee that the uncertainty in the velocity decreases
by increasing the number of measurements (Johnson and
Agnew, 1995). Finally, we note in Table 4 that the
correction to the velocity coming from the inclusion, in
the least squares estimator (eq.10), of the temporal
correlation of the coordinates is always smaller than the
corresponding uncertainty, in the sense of Allan variance.
One limiting case is the north component of the velocity
of Venice, whose time series are affected by considerable
periodic signal, presumably associated with monument
noise, as shown in Figure 5.  The tendency of long time
series to be described by spectral indexes 0 or –1 (white
phase or fliker phase noise).

Conclusion

The analysis of time series of geodetic monuments
surveyed either by single and dual frequency electronic
distance meters, or with GPS, has in the past justified
concerns as to the effect of correlated noise in the
estimate of the velocity of the monuments. The issue
deserves careful examination if strain associated for
example to crustal deformation is going to be estimated
from surface velocities of the monuments. Our analysis
of time series of 30 permanent European GPS stations
with time spans ranging from one to five years suggests
that when long time series are examined, the deviations
from white phase noise, if any, tend to be restricted to
flicker phase noise. This evidence is supported by the
average spectral index of the low frequency part of the
spectrum. We thus confirm earlier findings by Zhang et
al. (1997) and Mao et al. (1999), but we find in our
examples very little evidence for that random phase walk
which motivated Langbein and Johnson (1997) to raise
concerns on the possibility of estimating strain rate from
velocity measurement of monuments. Our proposed

treatment of uncertainties in the velocities stems from the
formalism developed in the 60's for the characterization
of the stability of atomic time and frequency standards.
We adopt the well known concept of two sample Allan
variance intended as the difference in slope of two
consecutive, equal length batches of a time series, which
is to be expected at the 1σ confidence level, and show
that this variance leads to velocity uncertainties larger
than those which would be predicted formally, using least
squares fit of uncorrelated equal weight data. This also
confirms findings by Zhang et al. (1997) and Mao et al.
(1999). Our method does not, however, rely on a
Maximum Likelihood Estimator, nor does it require the a
priori assumptions on the form of the covariance of the
data made by Johnson and Agnew  (1995). Consistently
with our findings of nearly white noise model as
dominant noise model for our time series, we find that
the Allan variance  does decrease with the inverse of the
number of samples. Another important element is the
negligibly small -with exceptions, such as VENE-
correction to the site velocities originating from the time
auto-correlation in the elements of a time series, relative
to the value obtained assuming uncorrelated data. We
therefore conclude that the reason for the uncertainty in
the velocity being higher than predicted by standard least
squares rests on the uncertainty of the input samples in
the time series, which we estimate to be in the order of
10.6 mm for the north and 6.4 mm for the east. If these,
we think not unreasonable, values are adopted as mean
uncertainty for the input coordinates, then the formal
least squares estimate of the velocity uncertainty
resembles that obtained by spectral means (Allan
variance), when time series of three or more years are
considered.
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Table 1: input data sets in the form of SINEX files for three overlapping networks of permanent GPS stations.
Time span

(GPS weeks)
# of SINEX

data files
total number
of stations Source

860 - 1110 246 133 EUREF Central Bureau
995 - 1110 105 33 University of Padova
1056 - 1099 44 13 Observatory Lustbuehl Graz

Table 2: the stations defining the velocity datum, according to the ITRF97 solution, in mm yr-1.

Station id #weeks VN VE

KOSG 13504M003 235 14.59 17.03
VILL 13406M001 230 13.80 18.17
JOZE 12204M001 236 12.94 21.17
METS 10503S011 236 11.36 19.93
ZECK 12351M001 167 7.85 25.68
HOFN 10204M002 169 14.54 9.85

Table 3: documented (Log=Yes) and undocumented (Log=No) discontinuities in time series, their epoch of occurrence
[dd.mm.yyyy (GPS week)] and estimated amount of change, in the sense of (value after the break  minus value before the
break) in N latitude, E longitude and ellipsoidal height. Formal errors are typically less than 0.1 mm. NOTO and NOT1 are
physically different monuments, but considered  equivalent from the geokinematic point of view.

Station Log Break epoch ∆φ
 (0.001")

∆λ 
(0.001")

∆h
(mm)

AQUI No 08.01.2000
(1043)

0.081 0.057 -51.5

BZRG Yes 29.11.2000
(1090)

-0.042 -0.052 -28.7

MATE Yes 19.06.1999
(1014)

-0.099 0.305 -4.6

NOTO No 06.11.1997
(0930)

0.164 0.085 0.5

NOTO Yes 29.07.1998
(0968)

0.233 0.145 0.2

NOT1 Yes 03.09.2000
(1078)

-
956.581

-81.536 125.6

PFAN Yes 27.07.1999
(1020)

0.172 0.21 -46.5

SBGZ Yes 29.07.1999
(1020)

0.205 0.239 2.1

SBGZ Yes 30.10.1999
(1033)

-0.114 0.017 9.8

SRJV No 05.04.2000
(1056)

-0.324 0.294 7.6

SRJV No 27.09.2000
(1081)

0.378 -0.445 0.8

TREN No 28.07.1999
(1020)

0.173 -0.026 58.5

TREN No 26.04.2000
(1059)

0.4 0.859 118.0

TREN No 12.07.2000
(1070)

-0.431 -0.808 -0.3

UPAD Yes 23.12.1997
(0937)

0.038 0.158 -4.3

VENE Yes 01.10.1997
(0925)

-0.14 0.057 -17.8

VENE Yes 01.02.2001
(1099)

1.84 4.599 72.7

ZIMM Yes 06.11.1998
(0982)

-0.01 0.19 -23.9
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Table 4: statistics of the time series of coordinates of permanent GPS stations: Net indicates the network (E=EPN,
D=Densification); span indicates the total extension of the series; #of data is the number of available data points (one
estimate of the coordinates is worth one week of data); the following two columns give the root mean square (r.m.s) spread
of the residuals of horizontal coordinates, to assess the repeatability of the estimates; following two columns give the
estimated noise model for the low frequency part of the spectrum, of the north and respectively east coordinate: with
reference to eq. (2) 0= White Phase noise, -1=Flicker Phase noise, -2=White Frequency noise; nest two columns give the
estimated uncertainty in the velocity, in the sense of two sample Allan variance; last two columns give the correction to the
estimated slope of a time series, assuming uncorrelated samples, due to the autocorrelation in time of the samples. All linear
units are mm.

Net Station span
(yr)

# data r.m.s.
north

r.m.s.
 east

sp.index
north

sp.index
east σN σE ∆vN ∆vE

   E AJAC 1.1 53 2.3 1.64 0 -1 4.81 4.63 0.82 0.02
D AQUI 1.7 78 1.34 2.01 -2 -1 1.32 1.54 -0.02 -0.69
E BZRG 2.3 112 2.38 1.66 0 0 1.69 1.71 -0.34 0.02
E CAGL 4.8 243 2.40 1.90 0 0 0.61 0.7 -0.11 -0.02
D COSE 1.3 41 1.44 1.63 0 -2 1.34 1.71 0.06 0.11
E GENO 2.3 113 2.47 1.55 0 0 1.54 1.59 -0.08 0.01
E GRAS 4.5 217 2.03 1.56 -1 0 0.39 0.36 -0.21 0.05
E GRAZ 4.8 242 1.63 1.51 0 0 0.57 0.57 -0.06 0.02
E HFLK 4.8 229 3.53 1.84 0 0 1.31 0.73 -0.35 -0.39
E LAMP 1.8 88 3.07 2.00 -1 0 5.63 2.46 -0.29 -0.64
E MARS 2.5 125 2.38 1.49 0 0 1.23 1.21 -0.09 0.03
E MATE 4.7 240 1.98 2.13 0 0 0.58 0.87 -0.04 0.17
E MEDI 4.8 241 3.12 3.85 0 0 0.98 1.2 -0.24 -0.12
E MOPI 4.4 211 1.79 1.91 0 -1 0.65 0.69 -0.24 -0.11
E NOTO 4.8 227 3.00 2.47 0 0 0.67 0.7 -0.17 0.03
E OBER 4.2 216 1.87 1.42 -1 0 0.47 0.59 0.04 0.03
E PFAN 4 198 1.99 2.11 -1 -1 0.54 0.68 -0.02 0.06
D PRAT 1.2 59 2.96 2.31 0 0 4.81 3.32 0.22 0.09
E SBGZ 2.2 107 2.33 2.25 -1 0 1.91 2.63 -0.46 0.04
E SJDV 2.7 134 2.18 1.41 0 0 1.11 1.23 0.01 0.12
E SRJV 1.1 45 2.11 1.73 0 0 3.94 4.59 0.34 -0.35
E TORI 2.2 105 2.81 1.59 -1 0 1.67 1.75 -0.69 -0.01
D TREN 2.1 95 3.62 3.13 -1 -2 2.07 1.35 0.28 0.14
E UNPG 2.2 106 2.82 1.68 -1 0 1.86 2.05 -0.59 0.02
E UPAD 4.8 236 2.05 1.95 -1 -1 0.54 0.75 0.04 0.11
E VENE 4.7 231 2.83 2.37 -1 -1 0.75 0.72 -0.94 -0.16
D VILH 2.2 90 2.72 3.95 -2 -2 4.07 2.25 -0.33 -0.19
D VLUC 1.5 67 2.37 3.16 0 -1 3.91 6.75 0.18 -0.14
E WTZR 4.8 243 1.86 1.66 0 0 0.46 0.65 0.00 0.13
E ZIMM 4.8 242 1.86 1.44 0 0 0.45 0.54 -0.06 0.15
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Figure 1: location of the permanent EUREF GPS stations.  Solid square borders the study area. For stations inside
the box with one or more year of data , velocities have been computed. For the remaining stations, the ITRF97 or
EURF 97 values have been assumed. Rectangles identify stations used for the realization of the ITRF97 velocity
datum.  (From the WEB page of the EBN Central Bureau).
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Figure 2: location of the permanent GPS stations analysed in this work. EUREF stations are labelled by
a triangle; Densification stations are labelled with a circle.
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Figure 2: a)  left : detrended and zero mean time series of GRAZ for north (above) and east
(below) coordinates; right: power spectral density (open circles) and linear interpolation of the
low frequency part (below 6 cycles/yr); estimated real value of spectral index is given on top of
each figure. b) normalized autocorrelation (left) and plot of the Allan sigma (or square root of
two samples Allan variance) for north and east components (right). The dot with a numerical
label indicates the estimated current value of the velocity uncertainty. Model curves represent
best fitting approximations of the Allan sigma assuming a pure white phase noise (dash dot),
flicker phase noise (solid) and random walk noise (dash) models. Note the poor fit provided by
the random walk noise model. Flicker phase and white phase noise curves very nearly coincide.

b)

a)
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a)

b)

Figure 3: same as figure 3, for the station PFAN.
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a)

b)

Figure 4: same as figure 3, for the permanent station VENE. Note in this case the large annual
and semiannual spectral peaks, perhaps associated with monument instability,  causing large
autocorrelation peaks at corresponding lags. For this station the correction to the velocity due
to the inclusion of the correlation among samples is largest.

a)

b)
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Figure 5: same as figure 3, for the permanent station ZIMM

a)

b)
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Figure 7: correlation between the Allan velocity uncertainty and the square root of the
(2,2) element of the variance covariance matrix in the normal equations of a linear
regression, taking into account the time correlation among samples. The correlation
coefficients for the east and north time series  are an estimate of the corresponding
mean uncertainty of the ensemble of  samples.
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Figure 8: correlation between the Allan velocity uncertainty and the inverse
square root of the number of data points in the linear regression. A linear
correlation is expected for uncorrelated  and equal weight samples.
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Figure 9: distribution of the spectral index as a function of length of a time
series. Random walk (i=-2)  tends to be unlikely when long time series are
analyzed. The average spectral index is -0.4 both for east and north,
suggesting that the most probable noise model is white phase noise also at
low frequencies.


