

EVALUATING THE POTENTIAL OF ACTIVE AND PASSIVE SAR CORNER REFLECTORS AS COMPLEMENTARY GEODETIC INFRASTRUCTURE IN SWEDEN

Puwakpitiya Gedara Chrishan¹, Nilfouroushan Faramarz^{1,2} Gido Nureldin¹, Olsson Per-Anders¹

Lantmäteriet, Geodata Division, Department of Geodetic Infrastructure, SE-801 82 Gävle, Sweden.
University of Gävle, Faculty of Engineering and Sustainable Development, SE-801 76 Gävle, Sweden.
E-mail: chrishan.puwakpitiya.gedara@lm.se

Abstract

In Sweden, three compact active transponders (CATs) and 18 passive corner reflectors (CRs) near twin fundamental class A SWEPOS GNSS stations have been installed complementing the geodetic infrastructure. Utilizing the PS-InSAR, a powerful Remote Sensing technique with these CATs and CRs shows promising millimeter-scale ground movement monitoring results compared to GNSS coordinates. Preliminary results reveal that displacement time series from CRs align within 2-3 mm accuracy with GNSS measurements, confirming the efficacy of integrating CRs in geodetic monitoring. Multi-year data analysis from CATs demonstrates good performance and comparable efficacy to CRs, validating their use in long-term geodetic studies.

Compact active transponders

GNSS LOS Composed vs InSAR LOS for CAT, path ASC102

acquisition date

Background

The study utilizes Sentinel-IA SLC products with an approximate one-week revisit frequency for each path over Sweden.

Figure I: The working principle of PS-InSAR, which is spatially and temporally relative. Our CRs are installed on the same bedrock as the GNSS antennas.

Figure 7: SCR and RCS of the Kobben CAT.

Figure 8: The displacement time series captured by the CATs compared to respective nearby GNSS stations.

Mårtsbo CAT and CR

GNSS LOS Composed vs InSAR LOS for CAT, path ASC29

acquisition dat

CATs and CRs installation

Table I: The CATs and CRs installation history.

CR ID	City	Installation Date	Туре	Orientation
ECR01	Mårtsbo	2020-01-07	CAT	ASC + DSC
ECR02	Kobben	2020-06-01	CAT	ASC + DSC
ECR03	Vinberget	2020-10-01	CAT	ASC + DSC
CR02	Onsala	2021-06-18	Triangular	ASC
CRTEMP	Mårtsbo	2021-08-07	Triangular	ASC
CR01	Onsala	2021-09-13	Triangular	DSC
CR03	Mårtsbo	2021-09-14	Triangular	ASC
CR04	Norrköping	2021-11-04	Squared double back flipped	ASC + DSC
CR05	Visby	2022-05-11	Squared trimmed	DSC
CR06	Visby	2022-05-11	Squared trimmed	ASC
CR07	Sveg	2022-06-14	Squared double back flipped	ASC + DSC
CR08	Östersund	2022-09-01	Squared double back flipped	ASC + DSC
CR09	Umeå	2022-10-21	Squared double back flipped	ASC + DSC
CR10	Skellefteå	2022-10-23	Squared double back flipped	ASC + DSC
CR11	Karlstad	2023-05-10	Squared double back flipped	ASC + DSC
CR12	Vänersborg	2023-05-12	Squared double back flipped	ASC + DSC
CR13	Oskershamn	2023-05-13	Squared double back flipped	ASC + DSC
CR14	Kramfors	2023-06-21	Squared double back flipped	ASC + DSC
CR15	Överkalix	2023-08-10	Squared double back flipped	ASC + DSC
CR16	Hässleholm	2023-09-27	Squared double back flipped	ASC + DSC
CR17	Leksand	2024-05-14	Squared double back flipped	ASC + DSC
CR18	Lovö	2024-05-17	Squared double back flipped	ASC + DSC

Methodology

The CAT and CR PSI analysis are done using the GECORIS toolbox and ESA-SNAP.

		Natural design		
	CR	\square	sentinel-1	Network design
GECORIS	station log-file	SAR		

Figure 6: The performance of the CAT in Mårtsbo compared to projected GNSS LOS and the PS network for path ascending 29 having the PCR as the reference.

VISBY CR Performance

Figure 2: Workflow of the GECORIS toolbox and the vector decomposition and the composition for InSAR LOS and GNSS LOS(Reference:https://doi.org/10.3390/rs13050926 and https://doi.org/10.1109/IGARSS47720.2021.9554216).

Figure 4: Individual SAR positioning corrections on the Azimuth and Range of the VISBY CR.

Figure 5: The displacement time series captured by the CR and compared to two nearby GNSS station's (VISBO and VISB6) E and U.

EUREF Symposium 2024, 5–7 June, Barcelona, Spain