How to best account for crustal deformation in Mayotte?

Collilieux X.^{1,2}; Grandin R.¹; Pasquier I.²; De Oliveira Pinheiro J.³; Lhermitte F.³; Virly B.³; Jamet O.³ Acknowledgment: Kristel Chanard, Bruno Garayt, Didier Bouteloup ¹ IPGP, ² ENSG-Géomatique/Université Gustave Eiffel, ³ IGN

Université

ustave Eiffel

Reference Frame in Mayotte

Deformation model in geodesy

In the stable part of a tectonic plate, a terrestrial reference system which co-rotates with the tectonic plate can be defined. Ex: ETRS89

In a deformation zone: $X_L(t_2) \neq X_L(t_1)$

EUREF 2024 - How to best account for crustal deformation in Mayotte?

Outline

- Deformation model
- Model evaluation
- Perspectives

3D displacement model

Principal component analysis (PCA) of GNSS displacements

POPO BUAL VERTICAL (cm) MAYG POPO BUAL 20 0 20 VERTICAL (cm)

44.8 44.9 45 45.1 45.2 45.3 45.4 45.5 45.6 45.7 45.8 45.9 46

Fig. Spatial component associated to the first temporal component.

Can be explained by a fluid-filled cavity (reservoir) whose outlet is connected to a pipe. The reservoir gradually equilibrates its pressure by expelling material through the pipe. A function that makes use of two exponential functions can model such a behavior (Le Mével et al., 2016)

Fig. Red : First component of the PCA. **Black**: Estimated model. Blue : residuals. Green : pressure history imposed at the extremity of the pipe

EUREF 2024 - How to best account for crustal deformation in Mayotte?

Implementation in « proj » library (<u>https://proj.org</u>)

Deformation can be represented with such a decomposition

Fig. Adapted from Crook C. (2019)

\$ cct +proj=defmodel +model=path/RGM23_defmod.json coord.txt

EUREF 2024 - How to best account for crustal deformation in Mayotte?

Model evaluation Internal deformation

Comparison with an independant processing at GNSS permanent stations (IGNF, Bernese) 10

Maximum difference among all possible baselines in East / North / Up : 2.5 cm/ 1.1 cm/ 2.0 cm

EUREF 2024 - How to best account for crustal deformation in Mayotte?

45°E

MTSA

12.6°

12.7°S

45.05°E 45.1°E 45.15°E 45.2°E 45.25°E

45 3 9

12.7°5

Model evaluation GNSS: campaign sites

New GNSS observations (campaign sites):

- 2 obs. sessions (2 h) from 11/09/2023 to 04/12/2023
- Stacked coordinates computed in IGS20@2023.75

RGM04 coordinates converted to ITRF2020 and propagated to epoch 2023.75 to compute the 2004-2023.75 displacements.

Fig. 16 common sites

Model evaluation GNSS: campaign sites

New GNSS observations (campaign sites):

- 2 obs. sessions (2 h) from 11/09/2023 to 04/12/2023
- Stacked coordinates computed in IGS20@2023.75

RGM04 coordinates converted to ITRF2020 and propagated to epoch 2023.75 to compute the 2004-2023.75 displacements.

Fig. Estimated displacements of the 16 common sites

Model evaluation **GNSS:** campaign sites

New GNSS observations (campaign sites):

- 2 obs. sessions (2 h) from 11/09/2023 to 04/12/2023
- Stacked coordinates computed in IGS20@2023.75

RGM04 coordinates converted to ITRF2020 and propagated to epoch 2023.75 to compute the 2004-2023.75 displacements.

Fig. GNSS displacements minus model

Model evaluation

Reference benchmark: N – 402 - BIS

▲ GNSS permanent stations

Units:

mm

-80 - -70

-70 - -60

-30 - -20
-20 - -10
-10 - 0
0 - 10
10 - 20
20 - 30
30 - 40
40 - 50
50 - 60
60 - 70
70 - 100

-60 - -50 -50 - -40 -40 - -30

Fig. Left) Difference btw levelling campaigns 2006 and 2023. No gravity correction applied. Right) Model prediction.

Linear model (Fitted in UTM 39 S) Residual std : 9.7 mm

А	(east)	(mm/km):	1.30 +/-	0.10
В	(north)	(mm/km):	1.54 +/-	0.06

Perspectives

- Publication of the deformation model and its 'proj' implementation
- <u>Release of the new frame « RGM23 »</u> (by IGN survey department)
- Make use of the deformation model to provide a grid transformation between RGM04 and RGM23?
- Release of a <u>transformation from ITRF2020 @ epoch t to « RGM23 »</u>@epoch 2023.75 ?
- <u>Upgrade of « RGM23 » to a semi-dynamic frame in a second step ?</u> Important: no need of the model after 2023.75. Advantage: All data acquired during the crisis (2018-2020) could be rigourously transformed to RGM23.

References

- Crook C. (2019), Proposal for encoding of a Deformation Model, Land Information New Zealand
- FIG (2014), Reference Frames in Practice Manual, Commission 5 Working Group 5.2 Reference Frames, publication n°64
- Grandin, R., Beauducel, F., Peltier, A., Ballu, V., Chanard, K., Valty, P., ... & Komorowski, J. C. (2019, December). Surface deformation during the 2018-19 mayotte seismo-volcanic crisis from gnss, synthetic aperture radar and seafloor geodesy. In AGU Fall Meeting Abstracts (Vol. 2019, pp. V52D-03).
- Kierulf, H. P., Valsson, G., Evers, K., Lidberg, M., Häkli, P., Prizginiene, D., ... Poutanen, M. (2019). Towards a dynamic reference frame in Iceland. Geophysica, 54(1), 3-17.
- Le Mével, H., Gregg, P. M., and Feigl, K. L. (2016). Magma injection into a long-lived reservoir to explain geodetically measured uplift: Application to the 2007–2014 unrest episode at laguna del maule volcanic field, chile. Journal of Geophysical Research: Solid Earth, 121(8):6092–6108.
- Nikkhoo, M., Walter, T. R., Lundgren, P. R., and Prats-Iraola, P. (2016). Compound dislocation models (cdms) for volcano deformation analyses. Geophysical Journal International, page ggw427.
- Peltier, A., Saur, S., Ballu, V., Beauducel, F., Briole, P., Chanard, K., ... & Van Der Woerd, J. (2022). Ground deformation monitoring of the eruption offshore Mayotte. *Comptes Rendus. Géoscience*, *354*(S2), 1-23.

WebObs OVS-IPGP

Mayotte time evolution - swarm (1 month)

© MAYOBS1 2019/SHOM 2016/SRTM/ETOPO, 2024 +© IPGP/ReVoSiMa, 2024

Ongoing seismic activity

Fig., location of epicentres (± 5 km) of volcano-tectonic earthquakes, last month

Filters: $DEP \in [-10, 100]$; $NPH \in [6, Inf]$;

VT Mayotte (39).

From: 04-May-2024 09:38 To:04-Jun-2024 09:38

Total events =41 Magnitude: min 1.1 – max 3.6 Types: Regional (2), Source: https://www.ipgp.fr/volcanoweb/mayotte/Bulletin_quotidien/bulletin.html

account for crustal deformation in Mayotte?

PROCHYPOMAYOTTE / MayotteZoomTime 01m - sysop@pitondescalumets - 04-Jun-2024 09:38:53 40 - hypomap.m (2023-02-14) / WebObs MMXXIV