

EUREF Symposium 2024

Institut Cartogràfic i Geològic de Catalunya Parc de Montjuïc, 08038 Barcelona

IGS vs EPN as the backbone to align GNSS network densifications

J. Zurutuza

M. Pertile

M. Bertocco

A. Caporali

M. Ferianc

Agenda

- 1. Introduction
- 2. EPN vs IGS20 REFERENCE station distribution in Central Europe
- 3. Bulgaria and Slovakia GNSS Network
- 4. Conclusions

GÜ

Introduction

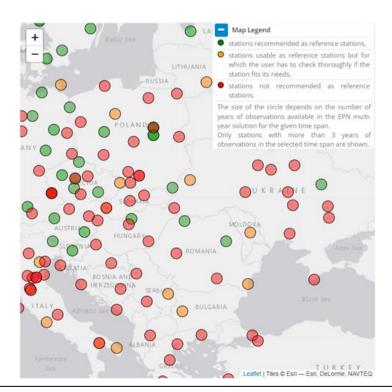
In this presentation we show the problems of stacking normal equations (P+V) in areas with lack of reference stations.

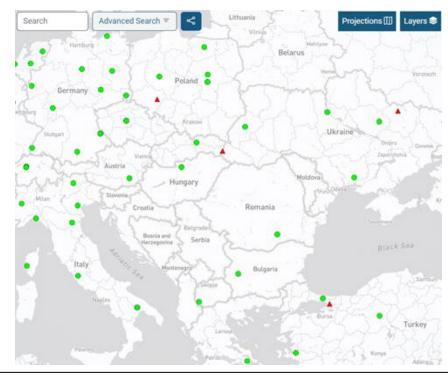
At the European level, we will usually use a certain EPN Cxxxx release, aligned to the IGS in a certain reference frame.

It can happen that we have a lack of reference stations or that the solutions are not available (Cxxxx in the IGS20 frame).

The alignment to IGS can be a problem for small networks/areas, where the reference stations are not enough to properly align our solution to the IGS.

We show the solutions of 2 national solutions that are aligned to the IGS using the P+V available at the IGS20 frame (https://network.igs.org/)




NIGGG

EPN vs IGS20 REFERENCE station distribution in Central Europe

EPN release (C2235, IGb14)

IGS20 frame

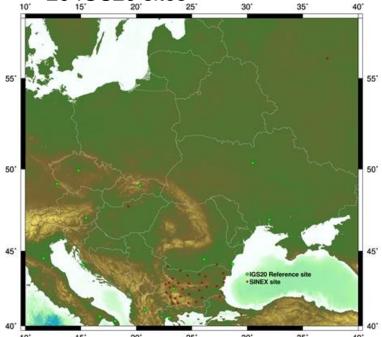
EPN vs IGS20 REFERENCE station distribution in Central Europe

EPN C2235

- The number of reference sites of the EPN is remarkable in Europe
- The available EPN sites will easily embody any GNSS network at the country level
- However, we have no IGS20-compliant solutions

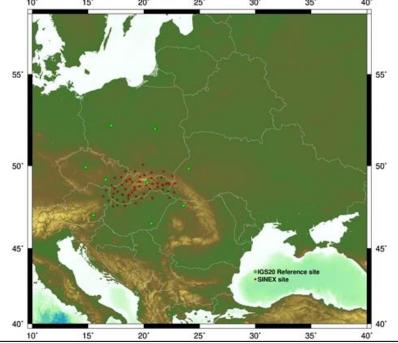
IGS20 frame

- The number of reference sites is limited and can be a proble in small areas
- IGS20 available sites might be far from the area and including them in the solutions implies computing very large baselines
- On the other hand, we have no other way to use and produce IGS20-compliant solutions



Bulgaria GNSS Network

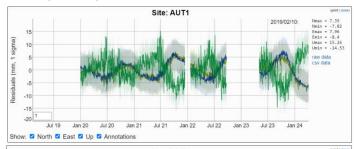
BAS SINEX files

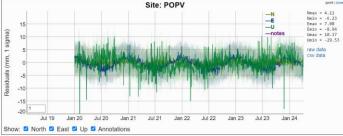

- + 4 years of data
- 20 IGS20 sites

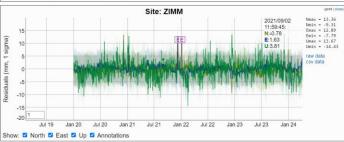
Slovakia GNSS Network

GKU SINEX files

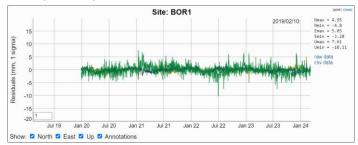
- + 4 years of data
- 10 IGS20 sites

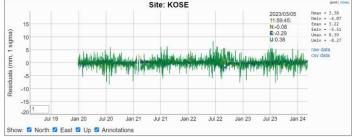



NIGGG



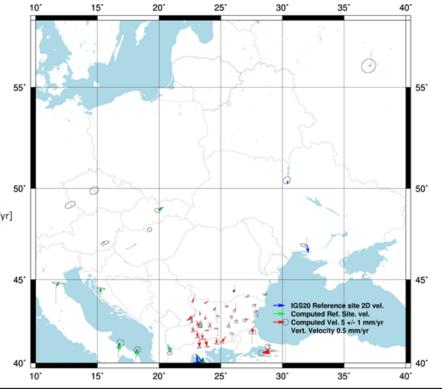
Some time series (daily solutions; no jumps due to frame switches)


BAS (GAMIT)



GKU (BSW54)

Bulgaria GNSS Network


Alignment to IGS20 (20 sites, 5 have discontinuities: 25 sites)

Positions (at epoch 2022.0):

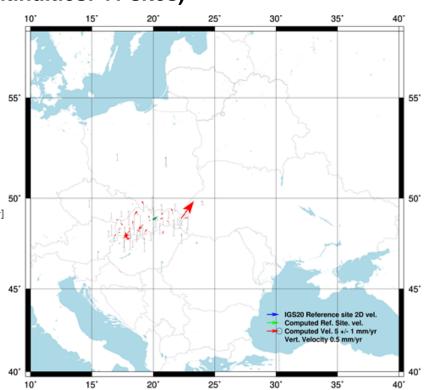
	N (mm)	E (mm)	Up (mm)
RMS / COMPONENT	0.59	1.18	3.87
MEAN	-0.34	-0.13	0.01
MIN	-3.55	-2.95	-5.40
MAX	2.29	2.92	8.27

Velocities:

	DVX[mm/yr]	DVY[mm/yr]	DVZ[mm/yr]	DVN[mm/yr]	DVE[mm/yr]	DVUp[mm/y
Max.	0.71	0.33	1.07	1.28	0.44	1.14
min.	-1.11	-0.43	-1.98	-1.94	-0.51	-0.78
Average	-0.01	0.00	0.00	-0.02	0.01	0.02
std. Dev.	0.48	0.26	0.65	0.59	0.28	0.55

NIGGG

Slovakia GNSS Network


Alignment to IGS20 (10 sites, 1 has discontinuities: 11 sites)

Positions (at epoch 2022.0):

	N (mm)	E (mm)	Up (mm)
RMS / COMPONENT	0.34	0.51	1.64
MEAN	-0.1	-0.17	0.82
MIN	-0.62	-1.35	-1.02
MAX	0.56	0.43	3.24

Velocities:

	DVX[mm/yr]	DVY[mm/yr]	DVZ[mm/yr]	DVN[mm/yr]	DVE[mm/yr]	DVUp[mm/yr]
Max.	-0.01	0.47	0.14	0.44	0.46	0.09
min.	-0.78	-0.52	-0.75	-0.60	-0.46	-0.94
Average	-0.26	-0.02	-0.21	0.06	0.07	-0.32
std. Dev.	0.29	0.25	0.31	0.26	0.24	0.35

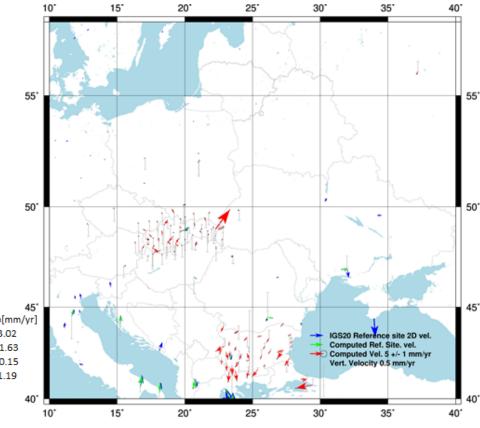
Bulgaria and Slovakia GNSS Network

If we consider the 2 solutions using IGS20 frame, individually:

- Both solutions align to the IGS20 within a few mm (positions) and less than 1 mm/year (velocities)
- Lack of reference sites: the available EPN reference sites would easily embody any of the provided solutions and we would have more sites to validate the solutions
- We can have more IGS20 reference sites if we combine the two solutions

Bulgaria and Slovakia COMBINED GNSS Network

Reference sites: 33


Common IGS20 sites: 3

Positions:

	N (mm)	E (mm)	Up (mm)
RMS / COMPONENT	1.03	1.37	4.43
MEAN	-0.2	-0.13	0.22
MIN	-1.69	-3.76	-6.79
MAX	2.22	5.08	11.25

Velocities:

	DVX[mm/yr]	DVY[mm/yr]	DVZ[mm/yr]	DVN[mm/yr]	DVE[mm/yr]	DVUp[mm
Max.	2.21	2.58	3.00	1.48	2.24	3.02
min.	-1.29	-1.31	-1.53	-2.17	-1.49	-1.63
Average	-0.11	0.00	-0.12	0.05	-0.06	-0.15
std. Dev.	0.95	0.69	0.95	0.71	0.60	1.19

Conclusions

- We have presented 2 examples of country-wise solutions where IGS20 sites have been used as reference sites
- The combined solution degrades, in terms of rms, related to the individual solutions:
 both countries are not neighbouring and the number of common reference sites is
 very small (only 3)
- Having more common and better distributed reference sites should help to improve combined solutions
- IGS20 sites can be an excellent alternative for EPN reference sites
- The size of the area/network is determinant: the larger the area, the more reference sites are needed.
- On the other hand, the larger the are, the more IGS20 stations available.

GÜ

Thank you

