

GNSS techniques for natural hazards detection and monitoring in the Iberian region

Víctor Puente García Leonor Cui Domingo Centeno Jose A. Sánchez Sobrino

Instituto Geográfico Nacional

Contents

- Volcanic monitoring service.
- Real-time multi-GNSS solutions for earthquakes.
- Tsunamis alert system through GNSS determination of the perturbations in the ionosphere.
- GNSS-R for sea level monitoring.

CORRENT DE DEMAN TARDEN USANA T

LPAL

IBE

Final

Estación: Proyecto:

Procesado:

0.01 E 0.00

-0.01

Marco de referencia: E89

Cambio receptor y antena

Cambio sólo antena

Otros cambios

Volcanic Monitoring Service in Canary Islands

- LPAL00ESP: IGS & EPN station in La Palma (Canary Islands).
- Trend in coordinates from September, 2021, mainly in the north component < 2 cm.

...on September, 19th, started an eruption in La Palma Island, until December, 13th

- 3000 buildings destroyed
- 74 km of roads destroyed
- 600 million € damages

GNSS network in Canary Islands: a case of usefulness

- A complete network of sensors (GNSS, sismometers, accelerometers, tiltmeters, thermic cameras...) were installed many years before in the Islands, specially in Tenerife, La Palma and El Hierro.
- Hourly & daily processing of GNSS data.
- Deformation was noticed in GNSS time series 6-7 days before the eruption.
- Together with other precursor signals, like seismic events, <u>the eruption was anticipated / expected.</u>
- Currently IGN is deploying a network in Decepcion Island, Antarctica.

Real-time multi-GNSS solutions for earthquakes

- GNSS have been widely applied for deformation monitoring in the interseismic and postseismic phases of the earthquake cycle.
- GNSS high-frequency measurements are becoming an important contribution for earthquake source determination.
 - Complement to the traditional seismic methods.
 - The ground motion measured by GNSS is not affected by the saturation problem.
 - Very high-rate measurement capability (50 Hz, 100 Hz).
- Although there is no area of large earthquakes, the seismic activity in the Iberian Region is relevant and there have been earthquakes Mw < 7 capable of causing serious damage.
 - Contribution to the GGOS Geohazards Focus Area.

Variometric approach: fundamentals

- VADASE method, proposed by Colosimo et al. (2011).
- It relies on measuring the relative variation of the GNSS phase measurements.

• Phase measurement at epoch *t*:

$$L_{1i}^{j}(t) = r_{i}^{j}(t) + c \left[\delta t_{i}(t) - \delta t^{i}(t)\right] + T_{i}^{j}(t) - I_{i}^{j}(t) + N_{1} + c \left(b_{1i} - b_{1}^{j}\right)$$

• Phase measurement at epoch t+1:

$$L_{1i}^{j}(t+1) = r_{i}^{j}(t+1) + c\left[\delta t_{i}(t+1) - \delta t^{j}(t+1)\right] + T_{i}^{j}(t+1) - l_{i}^{j}(t+1) + N_{1} + c\left(b_{1i} - b_{1}^{j}\right)$$

• Phase measurement difference:

$$L_{1i}^{j}(t+1) - L_{1i}^{j}(t) = \Delta r_{i}^{j}(t,t+1) + c \left[\Delta \delta t_{i}(t,t+1) - \Delta \delta t^{j}(t,t+1) \right]$$

Variometric approach: fundamentals

- Hypotheses:
 - No cycle slip between t and t+1.
 - o lonosphere and troposphere delays are considered constant for 1 s.
 - \circ $\;$ Knowledge of the satellites orbit and clock error.
- Displacements and clock receiver computation through least squares fitting:

$$\begin{array}{c|c} \frac{x^{1}-x_{i}}{r_{i}^{1}} & \frac{y^{1}-y_{i}}{r_{i}^{1}} & \frac{z^{1}-z_{i}}{r_{i}^{1}} & 1\\ \frac{x^{2}-x_{i}}{r_{i}^{2}} & \frac{y^{2}-y_{i}}{r_{i}^{2}} & \frac{z^{2}-z_{i}}{r_{i}^{2}} & 1\\ \dots & \dots & \dots & \dots\\ \frac{x^{j}-x_{i}}{r_{i}^{j}} & \frac{y^{j}-y_{i}}{r_{i}^{j}} & \frac{z^{j}-z_{i}}{r_{i}^{j}} & 1 \end{array} \end{array} \right] \left[\begin{array}{c} \Delta x_{i}\\ \Delta y_{i}\\ \Delta z_{i}\\ \Delta \delta t_{i} \end{array} \right] = \left[\begin{array}{c} L_{i}^{1}(t+1) - L_{i}^{1}(t) - \Delta r_{i}^{1}(t,t+1) + c\Delta\delta t^{1}(t,t+1)\\ L_{i}^{2}(t+1) - L_{i}^{2}(t) - \Delta r_{i}^{2}(t,t+1) + c\Delta\delta t^{2}(t,t+1)\\ \dots & \dots\\ L_{i}^{j}(t+1) - L_{i}^{j}(t) - \Delta r_{i}^{j}(t,t+1) + c\Delta\delta t^{j}(t,t+1) \end{array} \right]$$

• One row (measurement) per satellite and frequency.

GOBIERNO DE ESPAÑA MINISTERIO DE TRANSPORTES, MOVILIDAD ROCARCO SECONDAL

Example of other negligible variables influence: variation of orbits or solid tide

- Ephemeris error variation over 1 s:

- Solid tide displacement (STD) variation over 1 s:

Variometric approach: study cases

Earthquake	Date and UTC time	Mw	Depth (km)	GNSS station	Distance (km)
Alborán Sur	25/01/2016 04:22:01	6.3	12.0	MELI	85
Lorca	11/05/2011 16:47:26	5.1	4.0	LORC	7
Ossa de Montiel	23/02/2015 16:16:31	4.7	17.0	ALBA	67
Navarra	30/09/2020 22:02:31	4.5	1.0	UPNA	14
Granada	23/01/2021 11:15:24	4.4	0.0	GRA1	11

Variometric approach: computation flow

Variometric approach: Alborán Sur results (Mw = 6.3)

Variometric approach: Lorca results (Mw = 5.1)

Variometric approach: other results (Mw = 4.4 to 4.7)

Granada

Ossa de Montiel

Kalman Filter approach tunning: fundamentals

- The previous method can be refined by a KF algorithm, reducing the noise of the observations.
- KF works by a recursive two-phase process:
 - 1) Prediction step: the state vector is propagated based on a model.
 - 2) Innovation step: the value predicted in the previous step is corrected using observations.

Kalman Filter approach: Alborán Sur results

Kalman Filter approach: Lorca results

Real time monitoring feasibility and applications

- The tool developed is ready to be run on a continuous basis.
- Input data:
 - Hourly RINEX files for a NRT solution.
 - Data from public casters for a RT solution (latency of a few seconds).
 - Input orbit and clocks:
 - Broadcast GNSS navigation messages.
 - Predicted products from IGS-MGEX project.
- Displacements triggered by eartquakes Mw > 5 are successfully detected by means of GNSS.
- The proposed Kalman Filter reduces significantly the measurement noise before/after the event.
- Detection of local perturbations that might affect the stability of the stations.
- Characterization of the measurement noise of sites and antenna/receiver models.

Tsunamis alert system through GNSS ionosphere perturbations

- Tsunamis generate gravity and sound waves that propagate up to the ionosphere from the epicenter.
- Slant TEC disturbances are analyzed using the VARION method in a real-time scenario.

Satellite-receiver geometry

Fundamentals: VARION Method

Carrier-phase observation, in length units:

$$L_{iR}^{S}(t) = \rho_{R}^{S}(t) + c(\delta t_{R}(t) - \delta t^{S}(t)) + T_{R}^{S}(t) - I_{iR}^{S}(t) + \lambda_{i}N_{iR}^{S}(t) + p_{R}^{S}(t) + m_{iR}^{S}(t) + \epsilon_{R}^{S}(t)$$

Differentiating with respect to time between two consecutive epochs and applying the geometry-free combination (L₄):

$$L_{4R}^{S}(t+1) - L_{4R}^{S}(t) = \frac{f_{1}^{2} - f_{2}^{2}}{f_{2}^{2}} I_{1R}^{S}(t+1) - I_{1R}^{S}(t) ,$$

where $f_1 = 1575.42$ MHz and $f_2 = 1227.60$ MHz for GPS.

Fundamentals: VARION Method

 Considering the ionospheric refraction along the geometric range, the STEC variations between two consecutive epochs are:

$$\delta TEC(t) = \frac{f_1^2 f_2^2}{A(f_1^2 - f_2^2)} L_{4R}^S(t+1) - L_{4R}^S(t) \qquad \text{where } A = 40.3082 \cdot 10^{16} \text{ m}^3/\text{s}^2$$

• Estimation of slant TEC variations through the Trapezoidal Rule:

$$\Delta TEC(t_f, t_0) := \int_{t_0}^{t_f} \delta TEC(t) dt \approx \sum_{k=1}^N \frac{\delta TEC(t_{k-1}) + \delta TEC(t_k)}{2} \Delta t_k$$

being $\Delta t_k = t_k - t_{k-1}$ the time grid spacing

Ionospheric Pierce Point (IPP) coordinates determination

Assuming the estimated TEC is mainly due to the F_2 region, the IPP is defined as the intersection of this 350 km height layer and the line of satellite.

Coordinates of IPP are:

$$\begin{cases} \phi_{IPP} = \phi_r + \psi \cos A \\ \lambda_{IPP} = \lambda_r + \frac{\psi \sin A}{\cos \phi_{IPP}} \end{cases}$$

 (Φ, λ) , ellipsoidal receiver coordinates in GRS80, A, azimuth angle of the satellite Ψ , offset angle.

Threshold distance for Ionospheric Pierce Points

Depending on the earthquake's magnitude, it is defined a threshold distance, κ, for those satellites whose IPPs are closest to the epicenter (Kamogawa et al., 2016).

If Mw ≥ 8.4 , $\Rightarrow \kappa = 100$ km.

If Mw < 8.4, $\Rightarrow \kappa = 50$ km.

Candidate satellites verify the circle equation centered in the epicenter at F₂ layer (350 km height).

$$(\mathbf{\phi}_{IPP} - \mathbf{\phi}_{epi})^2 + (\mathbf{\lambda}_{IPP} - \mathbf{\lambda}_{epi})^2 \leq \mathbf{\kappa}^2.$$

Real cases of tsunami

Tohoku region, Japan. 11th March 2011. **Tonga**, Oceania. 15th January 2022.

	ϕ_{epi}	λ_{epi}	UTC time	Magnitude (Mw)
Tohoku	38.°297N	142.°373E	5:46:24 h	9.0
Tonga	20.°546S	175.°390W	4:14:45 h	7.3

IGS stations selected

Azimuth and elevation of the satellites

Search for the tracking satellite candidates due to the elevation and azimuth

EUREF Symposium 2023 Goteborg, 2023, May 23 – 26

Slant TEC time series (GPS) for Tohoku

0.6

0.4 0.2 0.2 0.2 0.2 0.2 0

-0.2

-0.4

-0.6

-10

EUREF Symposium 2023 Goteborg, 2023, May 23 – 26

FTNA - SVN75

TONG - SVN65

Slant TEC time series (GPS) for Tonga

Spanish Tsunami Warning System (STWS)

- IGN implemented STWS and it operates since some years ago mostly based in the seismic network.
- Integration of the measurements of ionospheric disturbances into the STWS based on this method.
- Low cost implementation and low computational time: DART buoys, expensive and high maintenance.
- No need of additional infrastructure to install.

Uncertainties in tsunami's prediction

- Estimation of the hypocentral location and its magnitude.
- There is no direct match between earthquake's size and tsunami's severity.
- Other anomalies affect the ionosphere, such as solar radiation, geomagnetic activity and strong meteorological events.

Historical tsunamis affecting near the coast of the Iberian Peninsula

GNSS-R for long-term sea level variation

- GNSS-R: sensor of near-field environment of a GNSS station based on the usage of reflected signals.
- Data: SNR, azimuth, elevation.
- Applications: sea level, soil moisture, snow depth...
- Methodology:
 - 1. Define azimuth and elevation range of interest
 - 2. Extract SNR from RINEX files
 - 3. Select satellite passes fulfilling azi and ele
 - 4. Convert SNR to linear units and remove temporal trend
 - 5. Sea level height computation:
 - LSP method: spectral analysis of SNR using Lomb-Scargle Periodogram
 - IM method (Strandberg, 2016): Inverse Modelling using non-linear least squares estimation (Advantage: multiconstellation)

$$\delta SNR = A \sin\left(rac{4\pi h}{\lambda}\sin e + arphi
ight)$$

 $\partial \text{SNR}(\mathbf{e}) = \left[C_1 \sin \frac{4\pi h}{\lambda} x + C_2 \sin \frac{4\pi h}{\lambda} x\right] \underline{\mathbf{e}}^{-4k^2 \Delta x^2}$

EUREF Symposium 2023 Goteborg, 2023, May 23 – 26

Method	Standard deviation (cm)	Correlation
LSP GPS, L1	5.3	0.91
LSP GPS, L2	7.7	0.83
LSP GLONASS, L1	5.5	0.90
LSP GLONASS, L2	5.4	0.90
LSP GALILEO, E1	7.4	0.84
LSP GALILEO, E5	12.5	0.62
IM (GPS+GLO+GAL+BDS)	3.2	0.96

Comparison between methods: one year data of **BCL1** station and comparison with RADAR tide gaude

EUREF Symposium 2023 Goteborg, 2023, May 23 – 26

GNSS-R results

- Direct sea level ITRF link.
- Sea level measurement if not tide gauge available: low cost.
- Direct discrimination of ground sink vs. sea level variation.
- Check possibility in GNSS and tide gauge co-location.
- IM method shows an accuracy of few cm
- li can be implemented for real-time data.
- Worse accuracy than tide gauges ☺

EUREF Symposium 2023 Goteborg, 2023, May 23 – 26

MINISTERIO DE TRANSPORTES, MOVILI Y AGENDA URBANA INSTITUTO GEOGRÁRCO NACIONAL

IMPORTANT NOTICE

Despite this presentation, please, dont worry, Spain is a safe place to stay on holidays, so please, come and enjoy !!

Thank you for your altention Instituto Geografico Nacional