

Monitoring and Detection of GNSS Interference Using the Swedish CORS Network SWEPOS

Kibrom Ebuy Abraha, Tobias Nilsson

EUREF Symposium 2023 May 23-26, 2023, Gothenburg, Sweden

Outline

- GNSS vulnerability Taxonomy
- GNSS interference threats
- GNSS interference monitoring at SWEPOS

GNSS Vulnerability

۲

۲

٠

SWEPOS GNSS Signal disturbance monitoring and detection - Goals

 Monitoring of anomalous events Using GNSS geodetic infrastructure – SWEPOS (not external monitoring system) Characterizing GNSS signals Monitoring signal strength 	 Detect anomalous events Classify anomalous events Multipath? Equipment failure? RFI? 	 Contain the event Geolocate the source Assess the impact and continuity of the event Mitigate it Receivers, software Inform users
---	--	--

- Flag off the stationMove the station
- GNSS dependent Infrastructures should have a clear plan of recovering their system in the event of large scale attacks and have other alternatives.

SWEPOS[®] **GNSS** interference Monitoring

• Monitors all Swepos stations + third party stations = ~544 stations

LANTMÄTERIET

SNR residuals characteristics

- Model SNR for each satellite (it takes receiver, elevation, azimuth and other dependent effects into account)
- Get SNR residuals (model data) for each satellite
- SNR changes slowly unless interference is present
- Over a short period of time SNR can be treated as a stationary process
- Normally distributed
 - Shapiro-Wilk normality test of SNR residuals
 - Null hypothesis residuals are normally distributed
 - Null-hypothesis is rejected for p-value < 0.05 (reddotted line)
 - SNR residuals normally distributed over shorter periods
 - Over longer periods (longer than 6 hours), p-values fall below 0.05 for most of the stations

SNR residuals characteristics

• Cross correlation of SNR residuals among simultaneously tracked satellites.

RFI-related disturbances

LANTMÄTERIET

Real signal interference incidents at Grisselhamn (0GIS)

Station: 0GIS

RFI centered at 1181.0 MHz, but affected a wideband (-5 MHz to +26 MHz)

PTS located the source to be a boat. The boat left the port on 1 October. The disturbance has since ceased. The source seems that same boat coming every year. PTS will follow up for more information on the equipment

LI disturbance – source located and contained

- RFI centered at 1581 MHz (~LI)
- 20-30 dBHz above the noise floor
- 5-6 MHz away from LI center
- Affected GPS/GLO/GAL LI
- Detected at more than one station.
- Didn't have a major import on the performance of the station
- Source was located and contained, GPS repeater in a lab

RFI Regional disturbance

- RFI centered at 1260, and 1325 MHz
- Affected GPS/GLO L2, BDS B3, Galileo E6
- Detected by several stations simultaneously
- Negligible impact on users
- PTS confirmed/detected the interference

Radio Amateurs – Beacons at 1296, affecting Gal E6

- Six SWEPOS stations affected
- Why affecting Galileo E6?
 - E6 transmission can extend to 1296
- B3 is also slightly affected

Repeatrar & Fyrar

Kartan drivs och underhålls av Dan, SM6TZL – <u>Marks Amatörradioklubb</u> – SK6BA

Non-RFI – Tree foliage attenuation

- Affects all signals
- Directional In a certain azimuth
- Spectrum shows nothing
- SNR drops not correlated across satellites

Non-RFI – Equipment related disturbances

Rosvik (0ROS) – GPS L5, GAL E5/E5a/E5b, BDS B2a disturbances

- No L5 band signals tracked
- No Galileo satellites tracked
- Disturbances appear during cold days
- Antenna issue (TRM59800.00 → LEIAR20)

LANTMÄTERIET

Takeaway!

- Hostile cyber operations on GNSS and GNSS-dependent infrastructures are a growing concern
- Monitor-Detect-Respond
 - GNSS dependent infrastructures should have a clear plan of recovering their system in the event of large-scale attacks and have other alternatives.
 - The goal is to protect critical GNSS and GNSS-dependent infrastructures against emerging (un)intentional threats; we should also use the same infrastructure for autonomous signal-situation awareness of threats.
 - Receiver and antenna manufacturers should consider interference threats when developing high-end GNSS receivers.
 - Users should make this part of a procurement when making receiver/antenna purchases