ETRF2020: a realization of the ETRS89

Zuheir Atamimi
Laurent Métivier
Paul Rebischung
Xavier Collilieux
Kristel Chanard
Julien Barnéoud

IGN-IPGP France

Outline

- Recall ITRS and ETRS89 relationship
- ITRFyy origin stability
- ITRF2020 Plate Motion Model
 - Inversion model: with and without a translation rate
 - Site selection
 - Preliminary results, but close to final
- Evaluation of the EURA rotation Pole
- Proposal for ETRF2020

ETRS89 Realization

ETRS89 adoption: Firenze (Florence), 1992

Fundamentally based on transformation from ITRS to ETRS89

Transformation formula ITRFyy ==> ETRFyy

Positions

$$X^{E}(t_{c}) = X_{YY}^{I}(t_{c}) + T_{YY} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times X_{YY}^{I}(t_{c}).(t_{c} - 1989.0)$$

Velocities

$$\begin{pmatrix} \dot{X}^{E}_{YY} \\ \dot{Y}^{E}_{YY} \\ \dot{Z}^{E}_{YY} \end{pmatrix} = \begin{pmatrix} \dot{X}^{I}_{YY} \\ \dot{Y}^{I}_{YY} \\ \dot{Z}^{I}_{YY} \end{pmatrix} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times \begin{pmatrix} X^{I}_{YY} \\ Y^{I}_{YY} \\ Z^{I}_{YY} \end{pmatrix}$$

Main focus next: Frame origin and EURA rotation pole

Transformation Parameters: From ITRF2020 to past ITRFs

Transformation p	arameters	from ITRF2020 to past ITRFs at Epoch 2015.0						
SOLUTION	Tx	Ty	Tz	D	Rx	Ry	Rz	
UNITS>	mm	mm	mm	ppb	.001"	.001"	.001"	
	•	•	•	•	•	•	•	
RATES	Tx	Тy	Tz	D	Rx	Ry	Rz	
UNITS>	mm/y	mm/y	mm/y	ppb/y	.001"/y	.001"/y	.001"/y	
ITRF2014	-1.4	-0.9	1.4	-0.42	0.00	0.00	0.00	
rates	0.0	-0.1	0.2	0.00	0.00	0.00	0.00	
ITRF2008	0.2	1.0	3.3	-0.29	0.00	0.00	0.00	
rates	0.0	-0.1	0.1	0.03	0.00	0.00	0.00	
ITRF2005	2.7	0.1	-1.4	0.65	0.00	0.00	0.00	
rates	0.3	-0.1	0.1	0.03	0.00	0.00	0.00	
ITRF2000	-0.2	0.8	-34.2	2.25	0.00	0.00	0.00	
rates	0.1	0.0	-1.7	0.11	0.00	0.00	0.00	

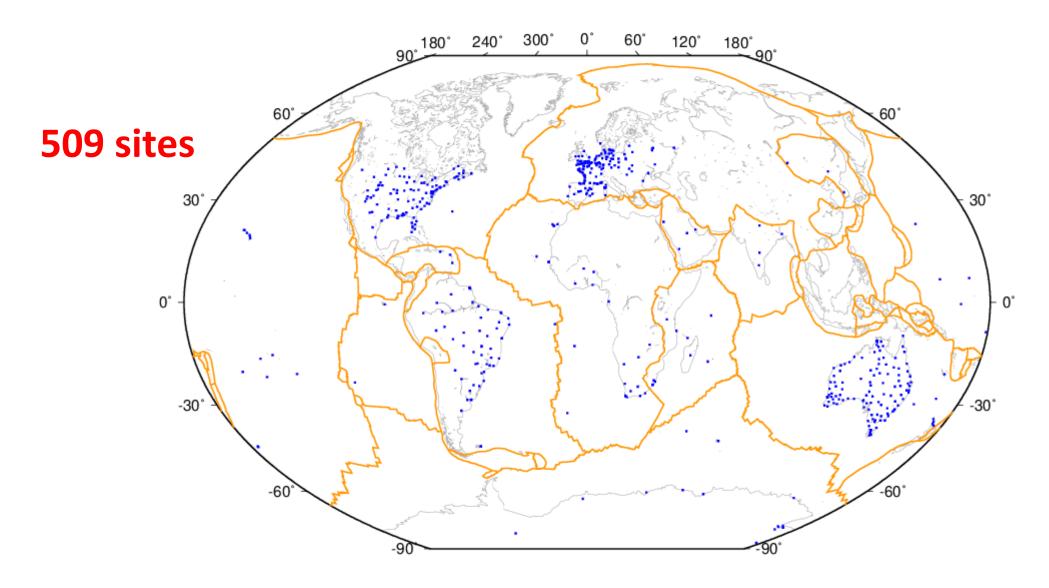
Inversion models

$$\dot{X}_i = \omega_p \times X_i$$
 (1) $\dot{X}_i = \omega_p \times X_i + \dot{T}$ (2)

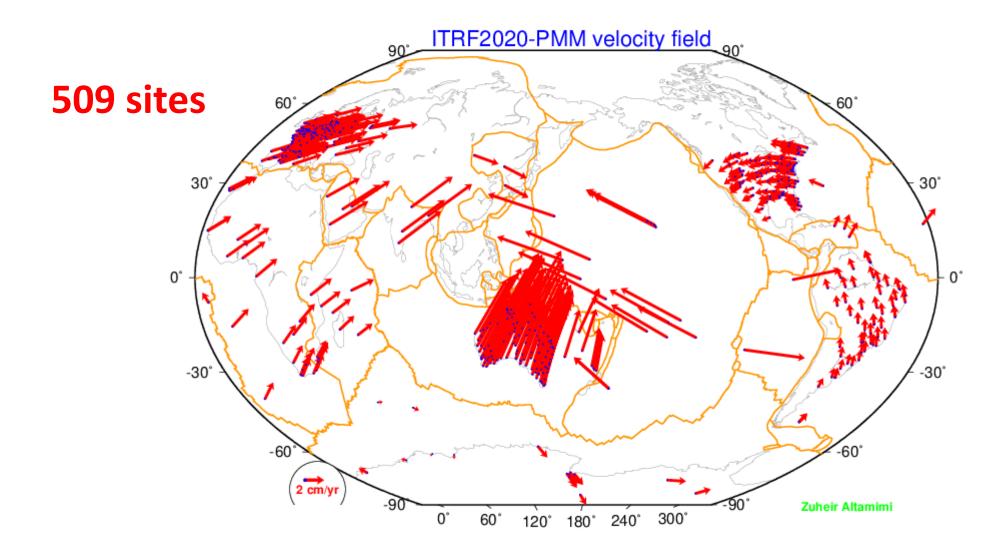
Translation Rate: \dot{T} : Origin Rate Bias (ORB)

- In principle \dot{T} = CM/CL translation rate
- CL: residual center of surface lateral figure, or "geometric center of tectonic plate motion" (Blewitt 2003)
- But in practice it is strongly dependent on site selection (network effect)
- ==> Hazardous to attribute any geophysical meaning to the estimated ORB
- T₇-rate varies between zero and 1 mm/yr

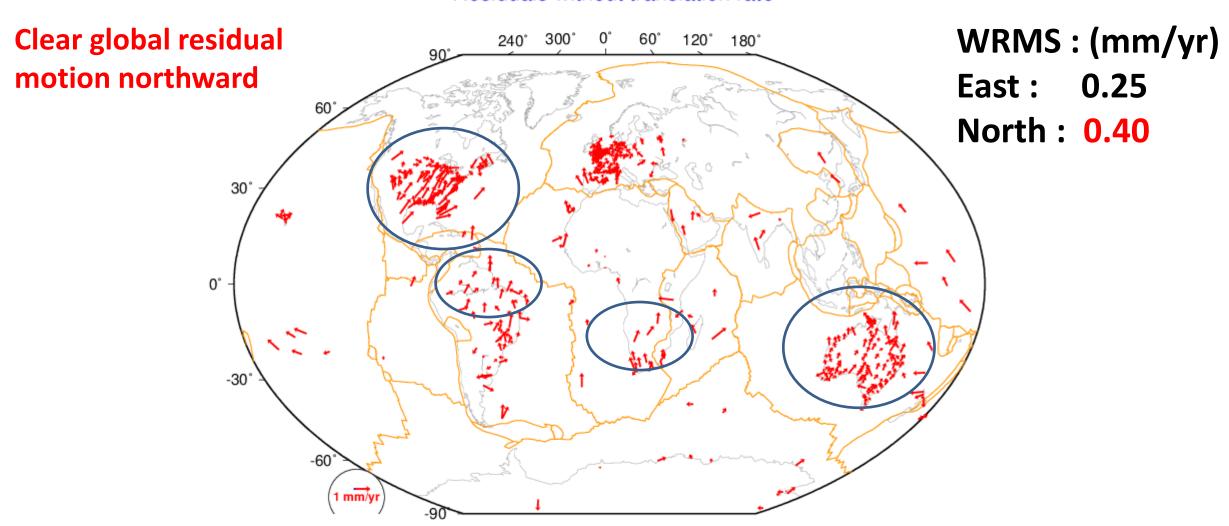
ITRF2020-PMM: Site Selection


- 1. Sites with time span > 3 years
- 2. Exclude PSD sites, with few exceptions where the linear velocity fits the adjusted model
- 3. At least 100 km away from plate boundaries
- 4. Outside regions impacted by Glacial Isostatic Adjustment (GIA) with vertical velocities > 0.80 mm/yr, except Antarctica
- 5. Outside of regions with significant deformation (Kreemer et al. 2014),
- 6. Outside regions impacted by present-day ice melting and trends in continental hydrology (GRACE-based horizontal velocities > 0.3 mm/yr)

7. Iterative adjustment till raw residuals < 1 mm/yr and normalized residuals < 3-sigma (1-mm/yr-3-sigma condition)

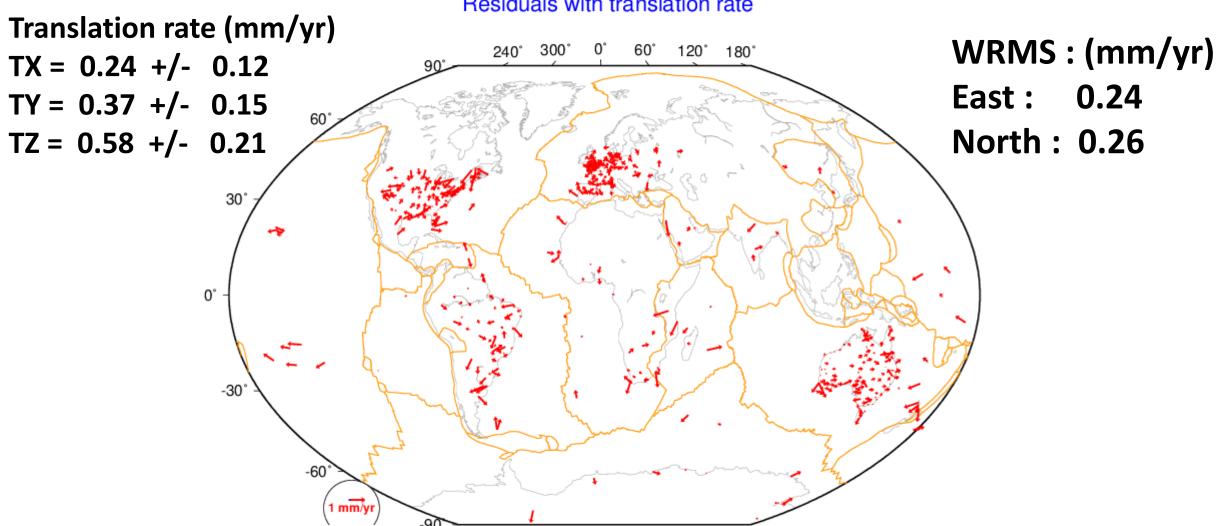

Final selection of sites

Final selection of sites



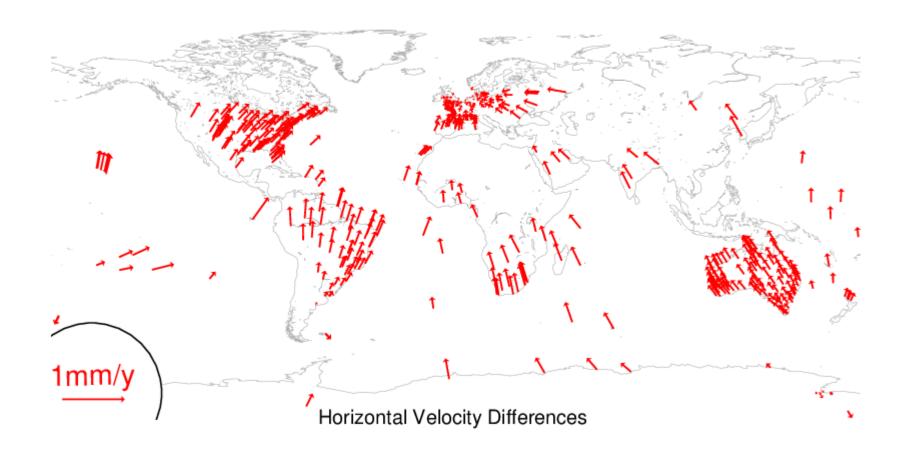
Residuals without translation rate

Residuals without translation rate



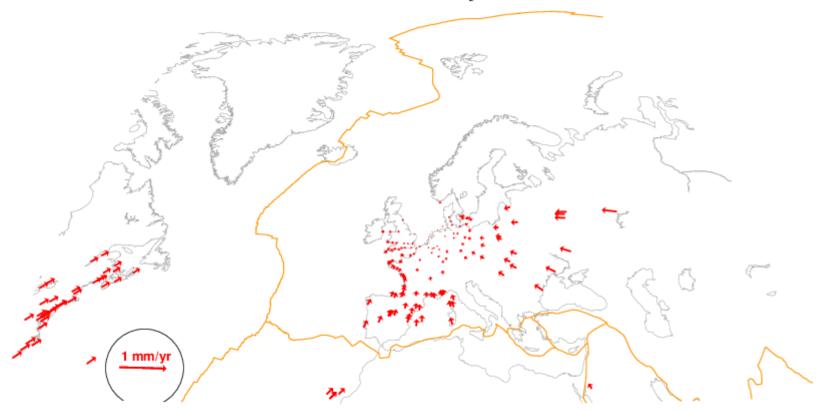
Residuals with translation rate T

Residuals with translation rate



ITRF2020 PMM will include a translation rate

Velocity differences between the two models



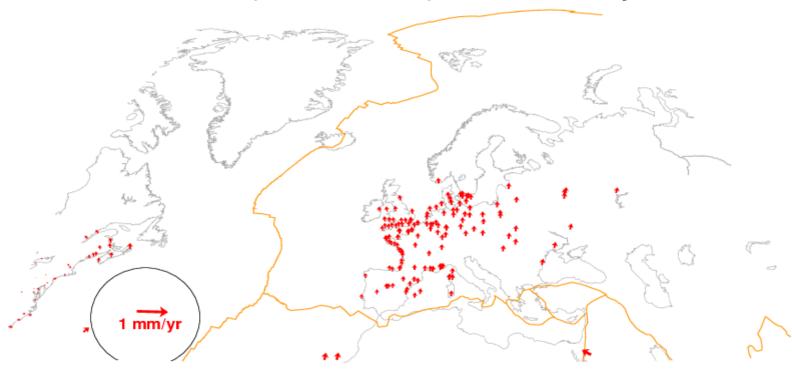
Velocity differences between the two models in Europe

==> Ignore the translation rate in the ETRF2020 definition

ETRF2020

 Geocentric: no translations or translation rates with respect to ITRF2020

 EURA rotation pole = EURA rotation pole derived from ITRF2020-PMM


Ignore the translation rate of ITRF2020-PMM

EURA rotation pole predicted Velocity differences between PMM2014 & PMM2020

EURA Pole (PMM14 - PMM20) horizontal velocity diffs

Next steps

- Finalize ITRF2020 PMM ==> publication
- Derive ETRF2020 with zero transformation parameters wrt ITRF2020, except the three rotation rates

==> ETRF2020 is coherent with ETRF2014 at a few mm and fractions of mm/yr level thanks to the ITRF origin stability and the tiny EURA rotation pole difference between the two frames

Update EUREF-TN-1

Table 1: Transformation parameters from ITRF_{yy} to ETRFyy at epoch 1989.0 and their rates/year

$ETRF_{yy}$	T1	T2	Т3	D	R1	R2	R3
	mm	mm	mm	10^{-9}	mas	mas	mas
ETRF2020	0.0	0.0	0.0	0.00	0.000	0.000	0.000
rates	0.0	0.0	0.0	0.00	0.079	0.518	-0.757
ETRF2014	0.0	0.0	0.0	0.00	0.000	0.000	0.000
rates	0.0	0.0	0.0	0.00	0.085	0.531	-0.770

