

Performance of Galileo for geodetic positioning under challenging signal reception conditions

M. Gianniou¹, D. Mastoris², P. Argyrakis¹, M. Christou¹
1. University of West Attica, Laboratory of Geodesy & Surveying
2. Hellenic Cadastre, Geodetic Department

e-mail: mgianniou@uniwa.gr

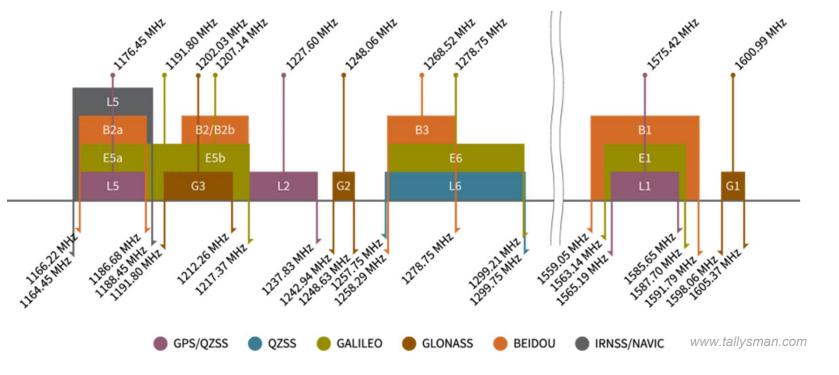
Outline

Introduction

- Characteristics of GNSS signals
- Case studies
- > Data analysis
- > Conclusions

Introduction

- ➢ Galileo's design is promising enhanced performance
- > Advanced techniques are used in its signal design (BOC, AltBOC etc.)
- > Several studies demonstrated superior signal tracking performance
- Here we focus on Galileo's performance under unfavorite signal reception conditions



Characteristics of GNSS signals

GNSS frequencies

Characteristics of GNSS signals

GNSS (civil) signals

GNSS	Block	Signals	Modulations used
GPS	IIR IIR-M IIF III	L1 C/A, L1/L2 P(Y) L1 C/A, L1/L2 P(Y), L2C, L1 C/A, L1/L2 P(Y), L2C, L5 L1 C/A, L1/L2 P(Y), L2C, L5, L1C	BPSK, BPSK mux, TM BOC
GLN	M K1 K2	L1OF, L1SF , L2OF, L2SF L1OF, L1SF , L2OF, L2SF, L3OC L1OF, L1SF , L2OF, L2SF, L1OC, L1SC, L2OC, L2SC, L3OC	BPSK, BOC
BDS-2		B1-2, B2, B3	BPSK
BDS-3		B1-2, B1, B2, B3ab	BPSK, TMBOC, BOC, TM BOC
GAL		E1, E6, E5a, E5b, <mark>E5a+b</mark>	CBOC, BPSK-BOC, AltBOC

based on Montenbruck et al., 2017

Characteristics of GNSS signals

Power of main GNSS signals

GNSS	Band	Signal	Power (dBW)	GNSS	Band	Signal	Power (dBW)		
GPS	L1 C/A -158.5 P(Y) -161.5	GAL	E1	D(B) P(C)	-160.0				
		L1C-P	-158.25 -161.5ª -163.0 ^b -157.9 ^c		E5	E5a	450.0		
	L2	P(Y)						E5b	-158.0
		L2C				E6	D(B)	150.0	
	L5	L5I,Q				P(C)	-158.0		
GLN	G1	C/A	-161.0	BDS	B1-2	OS	-163.0		
	G2	C/A	-161.0		B2b	OS	-163.0		

based on Montenbruck et al., 2017

Notes: ^a -164.5 for block IIA/IIR, ^b -161.5 for block III, ^c -157.0 for block III.

Case studies

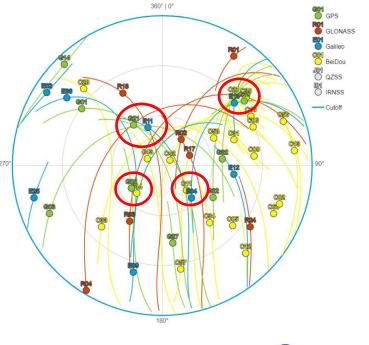
Analyzed data:

- > Measurements under tree canopies
- > Measurements in the presence of E/M interferences

Case studies

Representative examples

EUREF 2022 SYMPOSIUM ZAGREB 1 - 3 June 2022



Notes on the analysis strategy

Comparison of SNR among GNSS:

- Compare with a receiver tracking on a nearby 'good' point
- Only satellites with similar Elev. & Az. were compared

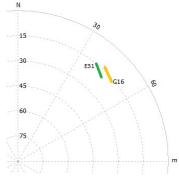
Notes on the analysis strategy

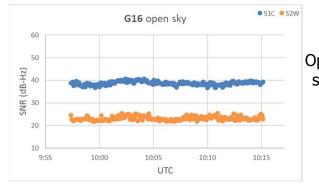
Comparison of signals among GNSS:

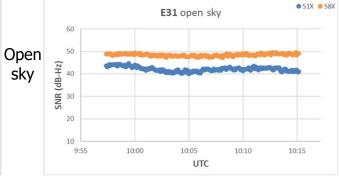
- **E5 vs. L2:** Imposed by practical reasons
- **E5 vs. L5:** Theoretically more correct

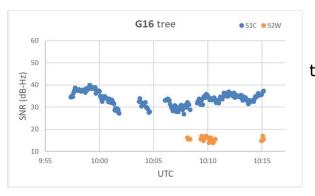
Notes on the analysis strategy

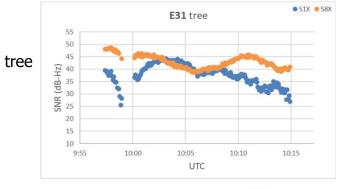
Comparison of coordinate errors among GNSS:


- ➤ Use all sv of each GNSS: OK from practical point of view
- ➤ Use same # of sv, similar DOP etc.: More fair comparison









Tree canopies: SNR analysis

EUREF 2022 SYMPOSIUM ZAGREB 1 - 3 June 2022

100

80

60

40

20

0

GPS

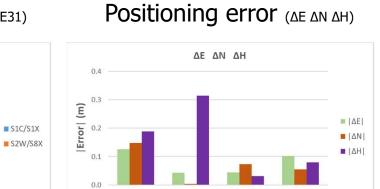
GPS tree

% of available epochs

Data analysis

Tree canopies: Comparison GPS, GLN, GAL, BDS

BDS

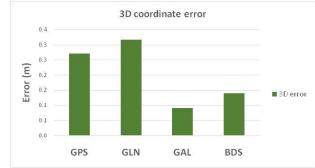

Tracked epochs (G16 - E31)

Tracked epochs

GAL

GAL tree

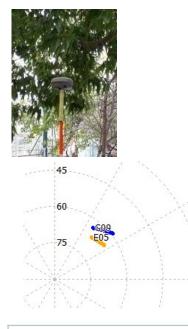
S1C/S1X



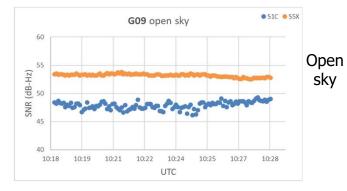
GAL

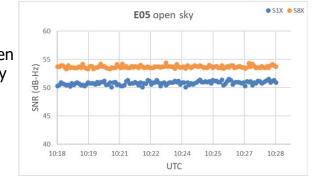
GLN

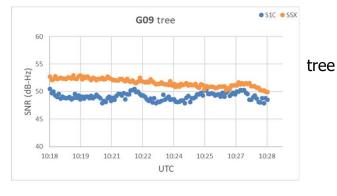
GPS

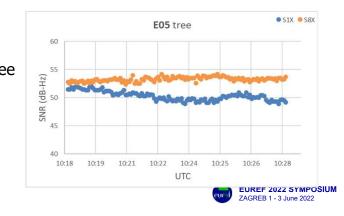

Positioning error (3D error)

EUREF 2022 SYMPOSIUM ZAGREB 1 - 3 June 2022

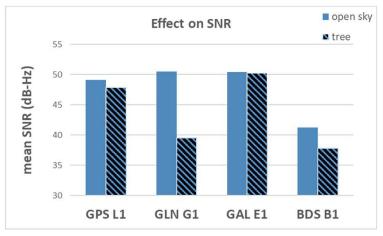


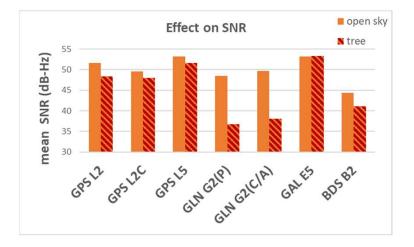





GPS	VS.	GAL
L1		E1
L5		E5

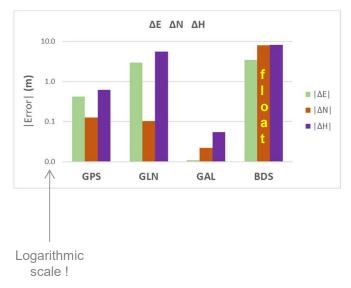
Tree canopies: SNR analysis

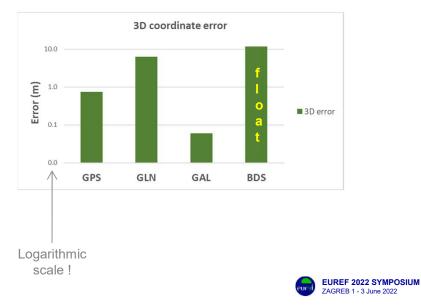



Tree canopies: Comparison GPS, GLN, GAL, BDS

SNR (L1, G1, E1, B1)

SNR (L2, G2, E5, B2)



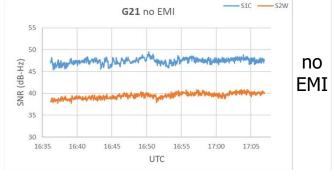


Tree canopies: Comparison GPS, GLN, GAL, BDS

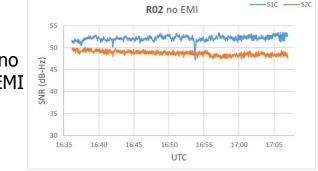
Positioning error (AE AN AH)

Positioning error (3D error)



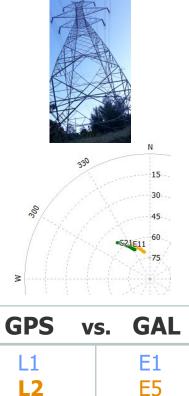


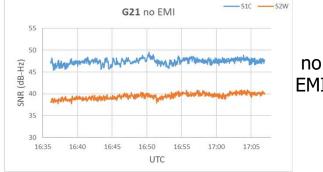
Electromagnetic interferences (EMI): SNR analysis

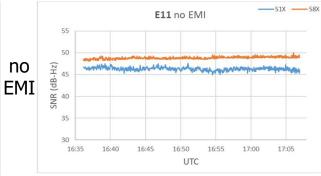


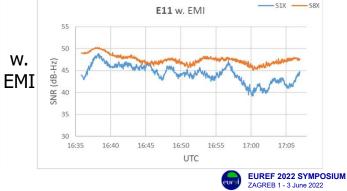


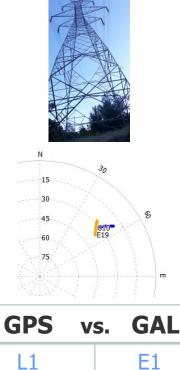
GPS	VS.	GLN
L1		G1
L2		G2



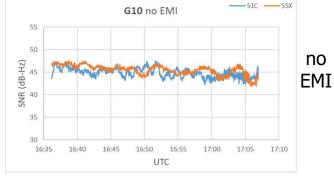


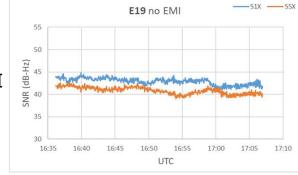


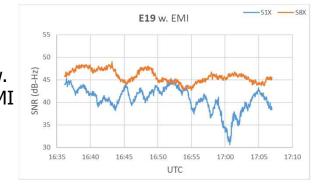

Electromagnetic interferences (EMI): SNR analysis



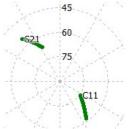
L5

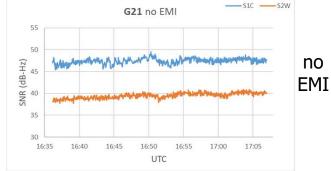

Data analysis

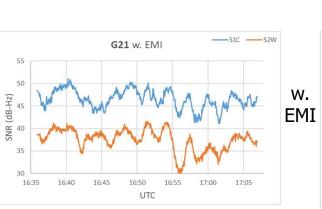

Electromagnetic interferences (EMI): SNR analysis

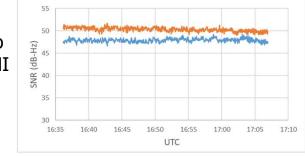


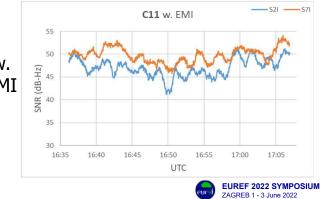
E5



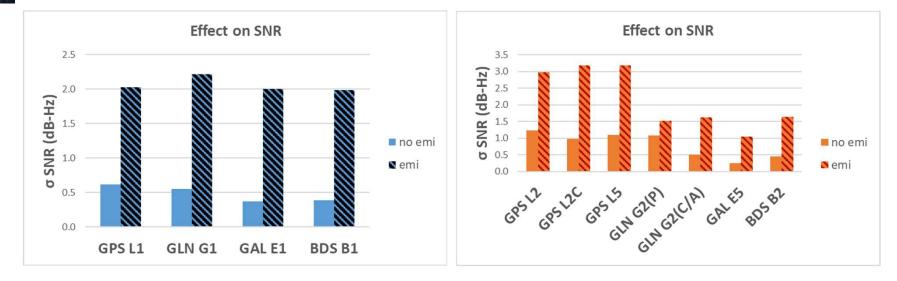

-S1X ---- S7X


Electromagnetic interferences (EMI): SNR analysis




GPS	VS.	BDS
L1		B1
L2		B2

C11 no EMI

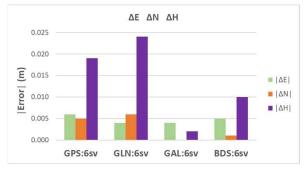


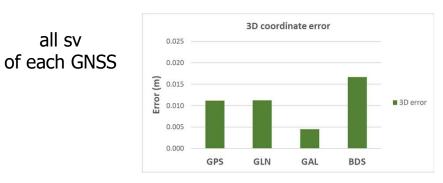
Electromagnetic interferences (EMI): Comparison GPS, GLN, GAL, BDS

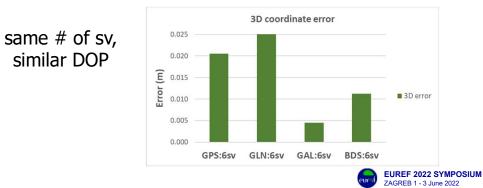
SNR (L1, G1, E1, B1)

SNR (L2, G2, E5, B2)

Electromagnetic interferences (EMI)


all sv




Positioning error (AE AN AH)

Positioning error (3D error)

Conclusions

> Tracking under tree canopies

- > E1 performs slightly better than L1
- > E5 performs much better than L2 (L8X vs. L2W)
- E5 performs slightly better than L5, G2, B2
- ➢ G1 and G2 are mostly affected

> Tracking in the presence of EMI

- > E1 performs more or less similar to L1, G1, B1
- > E5 performs better than L2, L5, G2, B2

> Positioning error

➢ Galileo shows a superior performance

- importance of L2C, L5, L1C

Future work

- Examine more cases
- > Distinguish between difference kinds of interferences (in-band, out-of-band etc.)
- ➢ Focus on modernized signals (L2C, L5, L1C, B1C, B2a etc.)
- > Investigate dependency on receiver architecture

Thank you for your attention!

