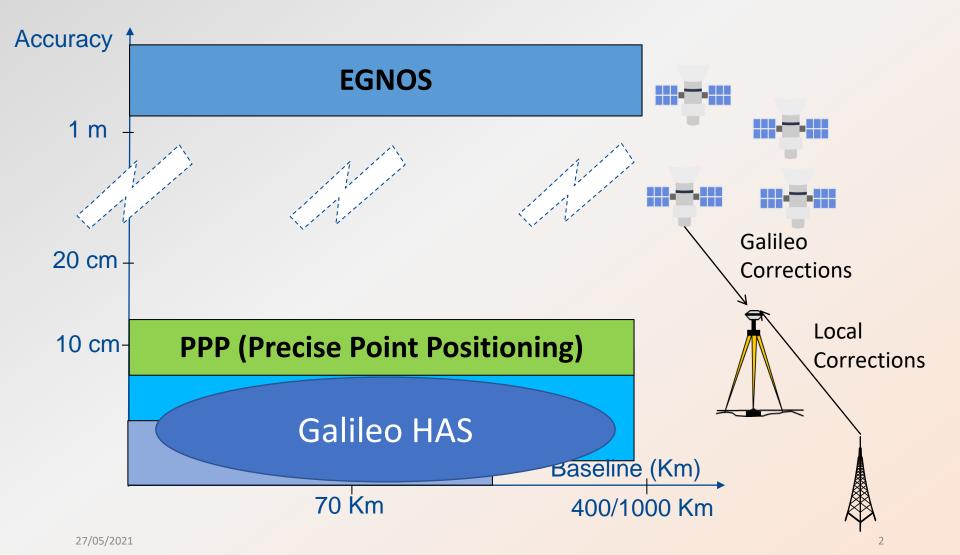


The GISCAD-OV Project: Innovative GNSS High Accuracy Services for Cadastral Surveying

"This project has received funding from the European GNSS Agency under the European Union's Horizon 2020 research and innovation programme under grant agreement No 870231"


> R. Capua, A. Frezza «EUREF 2021 Symposium » 27 May 2021

GNSS High Accuracy Services: current status

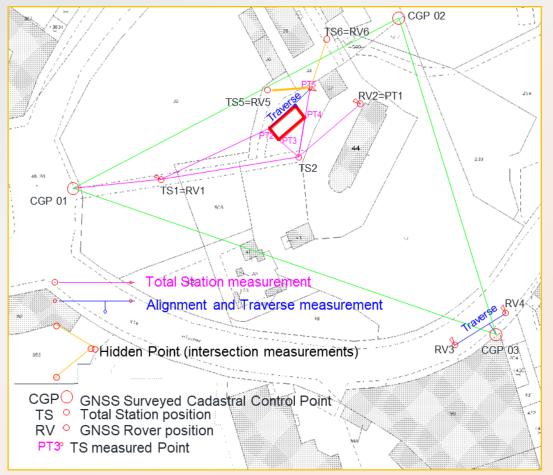
Project Organisation

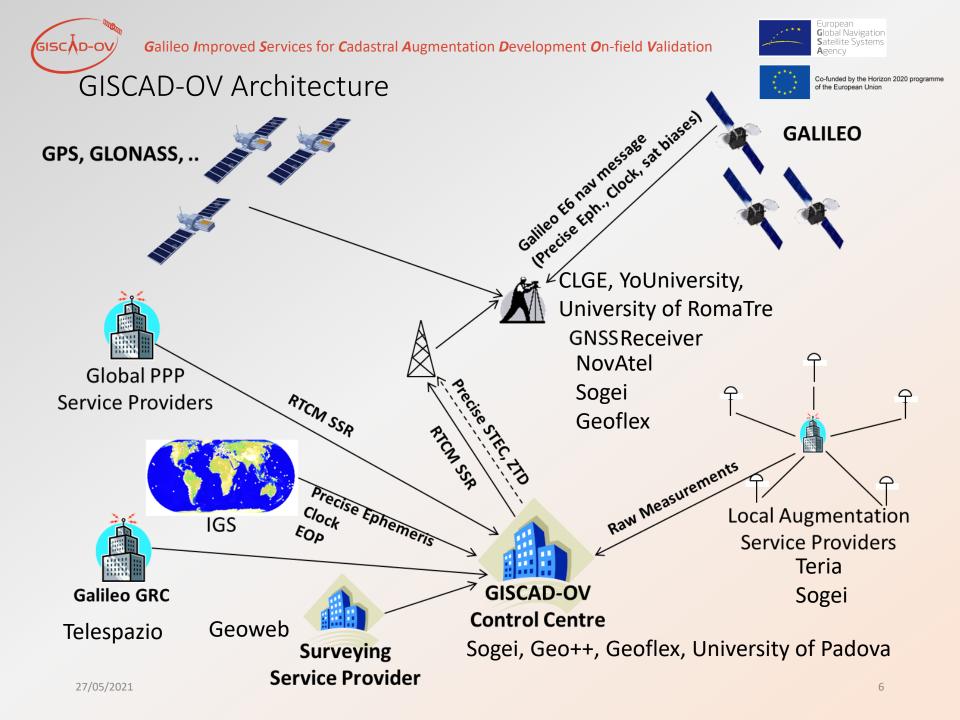
- Horizon 2020 Project
- Started on December 2019
- Project Duration: 36 months
- Project Members:
 - International Organisation of Surveyors
 - Local and PPP Service Providers
 - Service Providers
 - PPP and NRTK Software Company
 - NMCAs
 - Surveyors Service Providers
 - Receiver Manufacturers
 - Universities
 - RTCM and ISO Standardisation Chairmen
 - Advisory Board, including NMCAs

Organization	Туре	
GEOWEB SpA	Industry	
EXAGONE	Industry	
IGN-CNIG	Public Body	
SOGEI SpA	Industry	
UNIPD	University	
GEO++ MbH	Industry	
NOVATEL Inc	Industry	
YORK University	University	
GEOFLEX	Industry	
TU Delft	University	
TELESPAZIO	Industry	
VUGTK	Public Body	
CLGE	Public Body	
UNIROMATRE	University	

Project objectives

- Objective: design, development and validation of reduced cost GNSS High Accuracy Services for Cadastral Surveying and Infrastructural Monitoring applications through Galileo HAS services, PPP and PPP-RTK
- Main activities:
 - Cadastral Surveying Requirements for High Accuracy GNSS: all Value Chain actors involved (Augmentation SP, Software Companies, NMCAs, Professionals)
 - Design and Development of an Augmentation System for affordable and *reduced* service price High Accuracy Services for Cadastral Operations
 - Cadastral Surveying Pilot Projects in seven EU Countries Validation of Galileo Commercial Services and PPP through Cadastral Surveying
 - Scientific and Cadastral Validation: GNSS performances and NMCAs quality check
 - Business Analysis Involvement of the whole Value Chain for defining an affordable and cost effective Services for Surveyors
 - Standardisation: contribution to RTCM (SC-104, SC-134) and ISO 19152 LADM (LanD Administration Domain Model)





Cadastral Surveying procedures

- Instrumentation: GNSS, Total Stations, EDM
- Hidden Points
- NMCAs Validation
- Average Surveying duration more than 2 hours
- Surveys/year in single
 EU Countries:
 10000-1300000
- National Reference
 Framework and INSPIRE

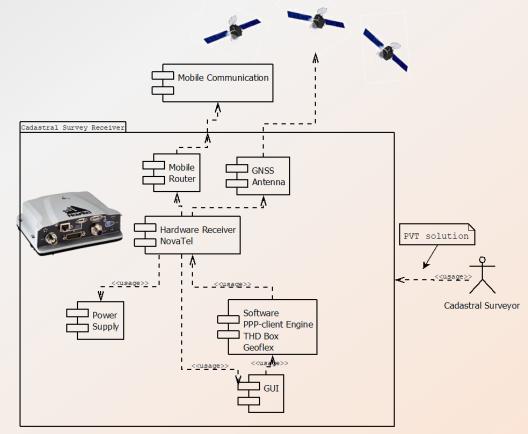
GISCAD-OV Service Levels

Cadastral Operation	Accuracy Requirement (1 σ)	Integrity	Availability	Time for Convergence/TTFA
SL1 Suburban or rural areas, cadastral map updates	30 cm	2*10 ⁻³ /hour (1)	High (97%)	Less than 10 min
SL2 Detailed Cadastral Points, Buildings insertion, boundary determination	<5 cm	2*10 ⁻³ /hour	High (93%)	5-10 min
SL3 Detailed Cadastral Points, Buildings insertion, boundary determination	<5 cm	2*10 ⁻³ /hour	High (93%)	1-5 min

(1) Derived from the maximum acceptable number of lost surveys/year

GISCAD-OV Control Centre and Augmentation (Sogei, Geo++, Geoflex)

- Integration of different GNSS High Accuracy systems:
 - Local Network SSR (Geo++)
 - Global SSR (Geoflex GNSSMart)
 - Reference Stations
- Performance analysis vs RTK and NRTK systems
- Control Centre in Rome (Sogei Data Center)



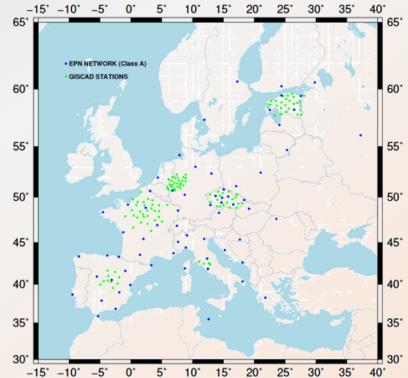
On-field Receiver Equipment

- Based on Commercial Receivers (NovAtel)
- Software receiver engine
- Mobile Communication
- Customizable output format
- Full Standard compliance and full backward compatibility vs RTK and NRTK

Pilot Projects (Lead by CLGE)

- Czech Republic
- 🗖 Estonia
- Croatia
- □ France
- Germany
- □ Italy
- Spain
- 5 surveys/Country (NMCAs rules applied)

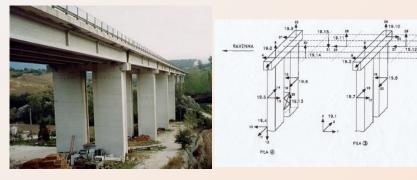
Galileo Based Infrastructural Monitoring on a bridge



Reference Framework Determination (University of Padova)

- European Reference Station files collection
- Weekly geodetic solution (IGb14 and ETRF2000)
- Global to National Reference Framework transformation parameters derivation
- INSPIRE Directive Compliance

Infrastructural Monitoring (University of Roma Tre)


- Integration of Galileo HAS, High Accuracy GNSS and accelerometers for Infrastructural Monitoring
- Infrastructure Dynamic Monitoring
- Test on one or two possible sites

Steel frame (rooftop of a SOGEI Building) Validation test

CESI Viaduct (along route E45) (San Gemini, Central Italy) Operational Test

N.B. LO SCHEMA THENE CONTO DELLE POLARITA' INVERTITE SU ALCUNI CANALI.

Expected Project Impacts

Service Providers:

GISC**Å**D-O

Reduced infrastructure and maintenance costs (<150 km sparse RS)</p>

Communication burdens reduction through HAS

Service Levels Differentiation

Cadastral Professional users:

Improved availability in urban areas

□One-time terminal configuration

Reduced Service costs

Receivers manufacturers:

Market uptake due to lower barrier to entry for High Accuracy Users

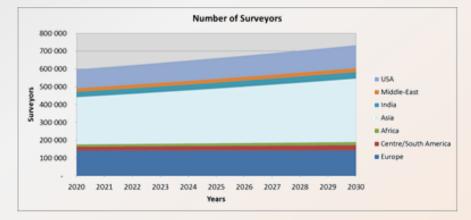
Cost production reduction due to economy of scale

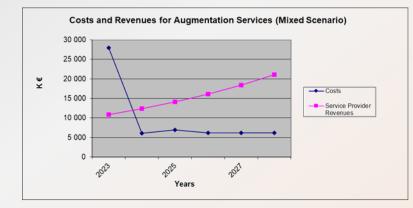
NMCAs:

Harmonized GNSS service levels on a wide area

Reduced time for cadastral acts approval

Increase in the number of processed acts per year

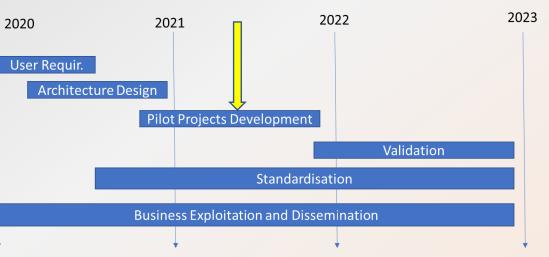






Business Analysis hints

- Cadastre is a niche but stable Market
- Business Analysis Scenarios:
 - Commodity
 - Mixed
 - Conservative
- Benefits for Agencies, Surveyors and citizens



Timeschedule and Next Steps

• Current Status (2020):

GISC**Å**D-O\

- User Requirements
- Architecture Design and Development
- Pilot Project Design
- Next steps (2021-2022):
- Pilot Projects development started
- Standardisation activities for GISCAD-OV within:
 - RTCM SC-104 and SC-134
 - ISO 19152 LADM
- Scientific and Cadastral Validation
- Business Analysis

Conclusions

- GISCAD-OV integrates current technologies and future Galileo HAS affordable High Accuracy services development for National Cadastral Surveying
- Timeschedule: End of 2019-end of 2022
- Integration of different solutions for Augmentation and Receivers
- Pilot Projects in 7 European Countries with real Cadastral Surveys

Galileo Improved Services for Cadastral Augmentation Development On-field Validation

Co-funded by the Horizon 2020 programme of the European Union

Thanks for your attention

https://giscad-ov.eu/