REVIEW AND UPDATE OF SWEREF 99

EUREF SYMPOSIUM 2021 ONLINE FROM SLOVENIA

26-28 MAY, 2021

LOTTI JIVALL, CHRISTINA LILJE



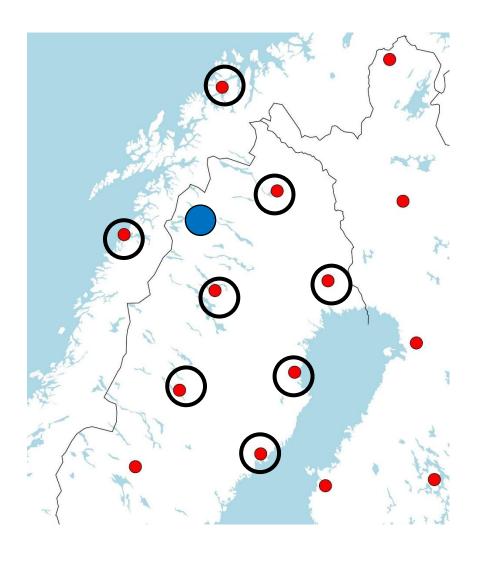
BACKGROUND

SWEREF 99, ETRS 89 IN SWEDEN, EPOCH 1999.5

Defined by **fundamental permanent GNSS-stations** in Sweden, Norway, Denmark and Finland. SWEREF 99 is mainly accessed through Swepos services (realtime or post processing)

6 weeks in the summer of 1999

- ITRF 97
- Bernese GNSS Software ver 4.2
- igs_01.atx (relative antenna models)
- 15° elevation cut-off
- DM Chokering antennas



SINCE 1999

- Relative deformations within Sweden up to 4 cm in north and east and 20 cm in height
- Antenna changes in Denmark and Norway soon after the campaign in 1999 (but Finnish stations remained until 2016)
- Antenna changes
- Antenna model changes (relative \rightarrow 108 \rightarrow 114)
- Elevation cut-off $15^{\circ} \rightarrow 10^{\circ} \rightarrow 3^{\circ}$
- Other model changes for the processing
- Glonass and later Galileo were added

METHOD FOR NEW SWEREF 99-COORDINATES

Concept of "local alignment" to the closest fundamental stations

- 3D Helmert 6-8 SWEPOS stations
- Additional foreign stations
- Reduction for landup-lift before the fit

SWEPOS-stations (new or changes)

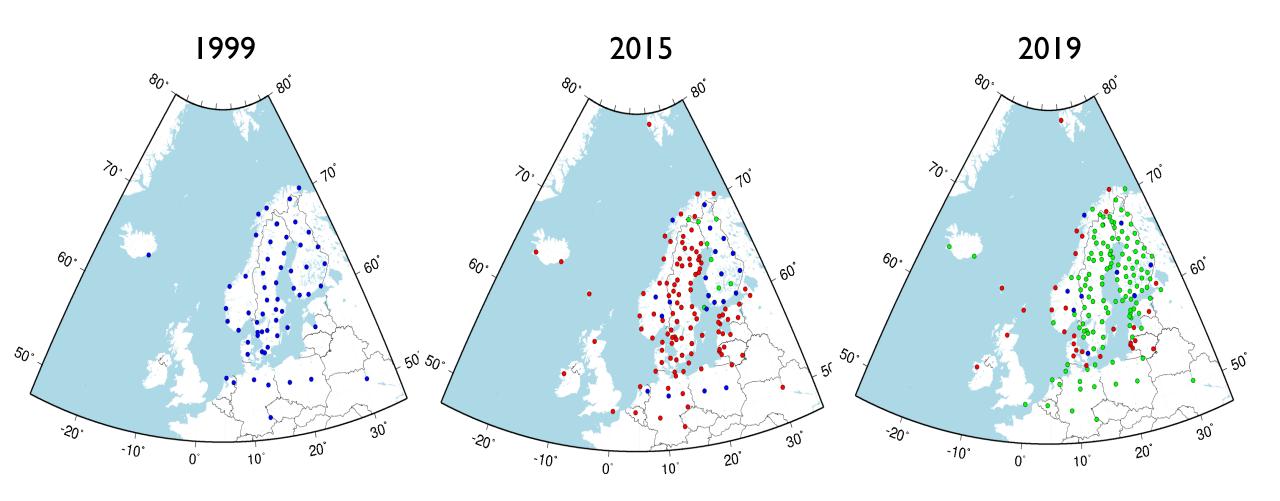
3 weeks of SWEPOS-processing combined with NKG GNSS AC-solutions

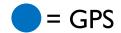
Passive points

 $2 \times 24 h$

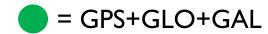


MOTIVATION AND OBJECTIVE


- Degradation and increasing demands on the precision from the SWEPOS-services
- Review: Analyse the "present" SWEREF99 coordinates and quantify the uncertainty from different contributors
- Update: Compute a new set of coordinates for all stations used in SWEPOS services and for the definition of SWEREF 99



WORK DONE



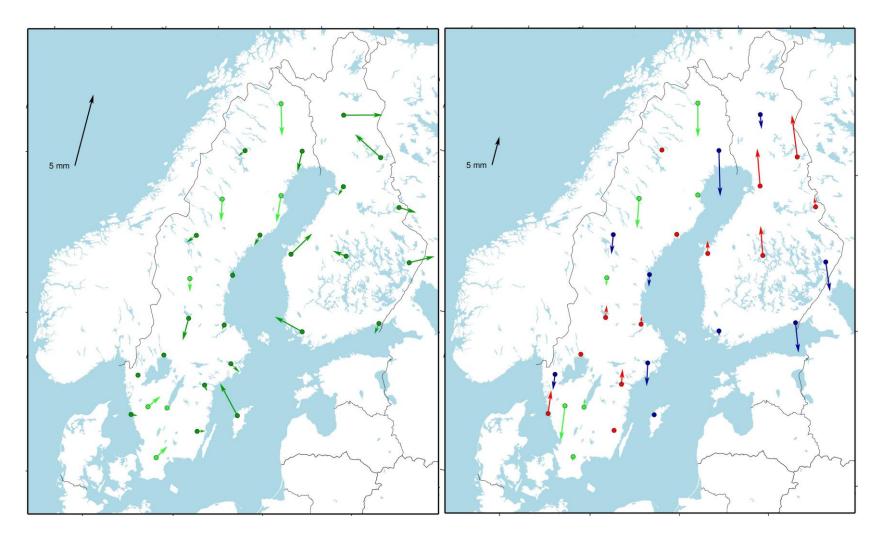
THREE CAMPAIGNS

COMPUTED SOLUTIONS

	1999		2015		2019	
Solution type	108	I14	108	l14	108	l14
Campaign GPS	S08_99_G	S14_99_G	S08_15_G	S14_15_G	S08_19_G	S14_19_G
Campaign GPS/GLO			S08_15_GR	S14_15_GR	S08_19_GR	S14_19_GR
Campaign GPS/GLO/GAL				S14_15_GRE		S14_19_GRE
NKG GPS	N08_99		N08_15R			
NKG GPS/GLO			N08_150			
NKG GPS/GLO/GAL						N14_19_3v/9v

16x2 = 32 solutions 3° and 10° grader

+ time series analysis based on NKG (reprol and operational)



UNCERTAINTIES (STANDARD UNCERTAINTIES NE/U)

contributor \ cut-off angle	3°	10°
Net/cluster/baselines	0.2 / 0.8 mm	0.2 / 0.8 mm
GPS – GPS+GLO	0.7 / I.5 mm	0.8 / 2.1 mm
GPS+GLO – GPS+GLO+GRE	0.3 / I.I mm	0.3 / I.2 mm
108-114	max 4 / 21 mm	max 4 / 24 mm
108-114 vs IGN-korr	0.5 / I.8 mm	0.5 / I.6 mm
1999 – 2019 17 stn (N/E/U) 1999 – 2015 28 stn (N/E/U)	1.3 / 1.0 / 4.4 mm 1.2 / 0.7 / 4.0 mm	1.3 / 1.1 / 4.5 mm 1.2 / 0.7 / 4.2 mm

1999 CAMPAIGN FITTED TO OFFICIAL SWEREF 99 (114, EP1999.5)

Light green arrows for stations with antenna changes

SWEREF 99 (114) from coord. DB (epoch 1999.5) minus S14_99_G (1999,114, GPS, 3°)

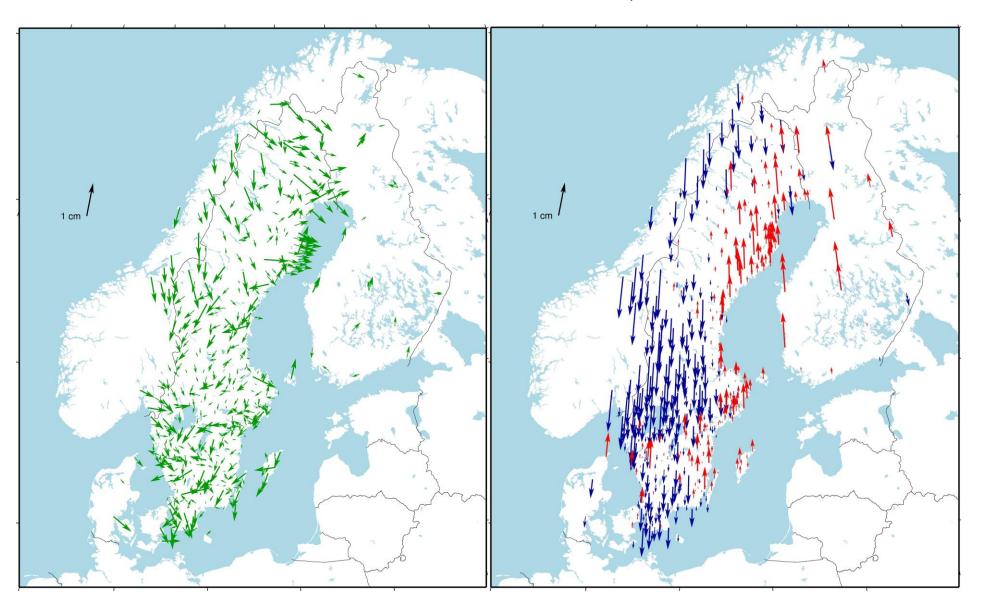
Totally 30 stations: RMS 0.9 1.0 3.7 mm in N E U

23 unchanged: RMS 0.9 I.0 3.8 mm in N E U

Residuals depend on:

- Uncertanties of corrections rel \rightarrow 108 \rightarrow 114
- Model differences (trop, elev.cut off)
- Uncertanties of antenna changes

NEW COORDINATE SET: SWEREF 99 UPDATE 2021


- Consistent with present observations and processing models
- Agree with present coordinates within the uncertainty limits of the SWEPOS services

NEW COORDINATE SET

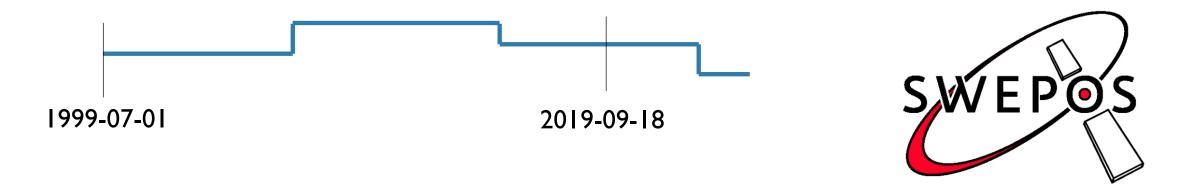
- ➤ Based on the 2019 campaign, 114, GPS+GLO+GAL (S19_14_GRE)
- > 3°, more consistent solutions than 10°, standard in EPN/EUREF
- > Add all other stations used in the Swepos services
- Fit to the "present" official SWEREF 99 (in the coordinate DB)
 - NKG_RFI7vel used for reduction to epoch 1999.5
 - Tested different sets of fitting points with following criteria:
 - O Best fit with priority to areas with the lowest uncertainties in SWEPOS services (project adapted areas)
 - Best agreement of orientation with EPN's realisation of ETRS89

SWEREF 99 MINUS SWEREF 99, UPDATE 2021

RMS:

2.7 2.4 4.9 mm

577 points


At the epoch 2019-09-18

RMS project adapted areas (14):
2.1 2.1 3.1 mm

IMPLEMENTATION IN SWEPOS SERVICES

The new updated coordinates were implemented in SWEPOS 2021-02-07, after:

- Coordinates for time intervals after 2019-09-18 all stations
- Coordinates for earlier intervals fundamenat stations and for projected adapted stations (where our partners wished so)
- The NKG Reprol + operational is used for checking the offsets

SUMMARY

- The review shows that we had a general uncertainty level on 2/2/5 mm in N/E/U
- The remaining errors of the 20 years land uplift, after modelling with NKG_RF17vel, is I-2 mm in NE and 4 mm in U, which correspond to 2-3% of the total deformation.
- Larger differences for GPS GPS/GLO than GPS/GLO GPS/GLO/GAL
- Better agreement for 3° than 10°
- A new set of SWEREF 99 coordinates have been implemented in Swepos
 - ✓ We consider it as an update and not a new frame
 - ✓ Consistent with observations and models of today
 - ✓ Better geographical coverage and the orientation agrees better with EPN ETRS89
 - ✓ Agree with earlier used coordinates within the uncertainty limits of the SWEPOS services

THANKS FOR YOUR ATTENTION!

Lotti Jivall, Christina Lilje

Geographic and Land Information – Geodetic Infrastructure

LANTMÄTERIET