

Splinter Meeting European Dense Velocities

EUREF 2019 Symposium

Elmar Brockmann, Joaquin Zurutuza, Grzegorz Nykiel, Mariusz Figurski, et al.

Activites since Amsterdam

- Web page (June 2018) <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/index.html</u>
- Questionnaire (June 2018) thanks for the returned feeback.
- Several new / updated solutions!

eur

- Many improvements on the combination side (as well as graphical support) group mail Feb. 2019
- Current focus for the next 2-3 years:
 - improving the input velocity field coming from the countries.
 - Develop methods to generate velocity grids

Examples from Praxis – how it works

 Poland (Grzegorz Nykiel, Mariusz Figurski) – presented by E. Brockmann due to absence

lots of Polish stations not provided by other ACs !

• ARA + UPA presented by J. Zuruzuza

eur

Contribution Poland (Gdansk University)

Not once a submission – iterative approach •

07-Aug-2018	NEW	gut14 added
08-Aug-2018	UPD	gut14 updated
02-APR-2019	NEW	gut14 updated and gut14x extended
		version included (without weight)
14-May-2019	UPD	gut14x updated (north bias and
		outliers removed)
16-May-2019	UPD	<pre>qut14 removed (qut14x full weight)</pre>

- New solution might be added additionally •
 - new solution without weight to the combination -
 - automatically differences are computed (as well as agreement with the combination)

VEL0-SOL018: Velocities in North in mm/y

Cross validations in mm/y

(Sortable table)

70.0 N

65.0 N

60.0 N

55.0 N

50.0 N

45.0 N

40.0 N

35.0 N

30.0 N

50L1	50L2	NUM 🔺	MEAN_N	SDEV_N	MEAN_E	SDEV_E	MEAN_U	SDEV_U
gut14	gut14	324	0.00	0.00	0.00	0.00	0.00	0.00
gut14	gut14x	321	0.31	0.14	-0.07	0.22	-0.03	0.40

18

16

14

12 10

-12

-14 -16

-18

- Removed:
 - STIN poorly estimated velocities due to the low quality of the results.
 - MAR6, VIS0 the highest residuals compared to the other solutions.
 - OSMZ, ONSA, KRA1 here the residuals are not dramatically wrong, but we decided to remove these stations to improve estimation of the average velocities.
- We didn't remove the following stations, despite the fact that residuals are quite large:
 - DZIA, GDAN, BIAL, BAIA, KUTN the residuals are large but the residuals from CEGRN solution have similar values but the opposite signs.
 - MDVJ, SOFI, HOBU, POLV, GWWL it is not the worst, so the residuals are burdened with the worse solution.
- We also removed several other stations because of low quality or too short time series. Generally, we removed 15 stations compared to our first solution.

• Before Update

Station residuals in mm/y

(Sortable table)

STATION	LAT/LON	VN	VE	VU	VH 🔺	[vv]	NUM
[OSMZ]	[+52.798/+021.904]	0.67	0.18	-1.05	0.69	1.05	4
[TRO1]	[+69.663/+018.940]	-0.64	-0.20	-0.18	0.67	0.18	10
[GDAN]	[+54.390/+018.585]	0.63	-0.09	-1.10	0.64	1.10	4
[GRAJ]	[+53.651/+022.455]	0.52	-0.24	-0.21	0.57	0.21	4
[WLOC]	[+52.638/+019.149]	-0.02	-0.54	-0.46	0.54	0.46	3
[POZN]	[+52.477/+016.866]	0.16	-0.51	0.10	0.53	0.10	4
[SASS]	[+54.514/+013.643]	0.48	-0.22	-0.24	0.52	0.24	6

• After Update

STATION	Maps	LAT/LON	VN	VE	VU	VH ▲	vv	NUM
[TRO1]	[+69	.663/+018.940]	-0.61	-0.20	-0.48	0.65	0.48	11
[GRAJ]	[+53	.651/+022.455]	0.50	-0.25	-0.22	0.56	0.22	5
[POZN]	[+52	.477/+016.866]	0.17	-0.51	0.10	0.54	0.10	5
[WLOC]	[+52	.638/+019.149]	-0.03	-0.53	-0.46	0.53	0.46	4

eursf

GUT14X (new test contribution)

- It was made based on weekly coordinates and covers longer period of time (1678
 – 2038 GPS weeks). Reference is based on IGS14 (instead IGS08)
- We've also improved time series filtering and we've applied constraints for stations closest than 2 km. This solution should be more stable and reliable

Diff. to combination

GUT14X

GRYF

SLAW

POT A

SARW SZEK RZ

CZAR

TUC

BBOF

NO

STPA

CZ•AR

SB

٠

eur

ss

C

SPESS

Input gut14x

GELSZCZ

Input gut14

GELS7C7

GOL

PYRZ NOPO CHOC

SUCH

GOL

NOPO

CHOC

SUCH

CHOS

CHOS

residual

0.5

0.0

-15

1.5

0.5

0.0

-0.5

-15

-10

-2.0

Wed May 08 19:37:24 2019

9

Station residuals in mm/y

(Sortable table)

8

Current Polish velocity field

eur

Tectonically pretty stable country and well defined by ETRF2000 reference frame https://test.map.geo.admin.ch/?lang=en&topic=ech&bgLayer=ch.swisstopo.leichtebasiskarte.vt&zoom=0&layers=KML%7C%7Chttp:%2F%2Fpnac.swisstopo.admin.ch%2Fdivers %2Fdens_vel%2Feu_dens_vel_all.kml (2 minutes loading...but then good performance)

Example: KATO

Splinter – European Dense Velocities, EUREF19, E. Brockmann, J. Zurutuza, et al. swisstopo

Wed May 08 19:38:43 2019

lps17 asc08

gn1 ch0

Quick Example 2: EPN Densification

Quick Example 3: ITRF2014

MAN

***	MAN:	ACOR	43.4/	-8.4	from	itrf14	deleted	1
***	MAN:	DYNG	38.1/	23.9	from	itrf14	deleted	ł
***	MAN:	KARL	49.0/	8.4	from	itrf14	deleted	1
***	MAN:	MAD2	40.4/	-4.2	from	itrf14	deleted	1
***	MAN:	MALL	39.6/	2.6	from	itrf14	deleted	ł
***	MAN:	SRMP	72.9/	-54.4	from	itrf14	deleted	1

OUT

***	OUT:	VARS	70.3/	31.0	from	itrf14	deleted
-----	------	------	-------	------	------	--------	---------

RES

***	RES:	ANKR	39.9/	32.8	from	itrf14	deleted	
***	RES:	KELY	67.0/	-50.9	from	itrf14	deleted	,

Sparse. Not error-free (removing sites on the combination level necessary)

Considered Solutions (ARA)

Daily (RAPID and FINAL): about 350 sites 31 different antenna models used 41 (if the radome is considered)

Latitude varies from 27.5N to 48.3N Longitude varies from 31W to 7.5E

With such latitude variation, the antenna Latitude-dependent model of IGS must be Considered: a simple offset will not work

Considered Solutions (UPA)

RINEX data are polled daily from a variety of FTP repositories in Italy and neighboring areas. **The cumulative solution consist of +600 sites**

Validating Results (all contributions)

At a glance we can see a lot of useful information: <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/000.html#STATIONS</u>

Number of Acs computing certain sites

euro

Basic statistics of the individual solutions w.r.t. the combined

Statistics w.r.t. the combination

Validating Results (all contributions)

At a glance we can see a lot of useful information:

http://pnac.swisstopo.admin.ch/divers/dens_vel/000.html#STATIONS

Some statistics are also provided for each AC which are useful to help in improving the results!

NUM	SOLUTION	WEI_N/WEI_E/WEI_U	TRA_N/TRA_E/1	rra_u	#INI	#DEL	#ORI	#MAN	#OUT	#RES	#FIN	#CMB	MEAN_N	SIG_N	MEAN_E	SIG_E	MEAN_U	SIG_U	MEAN_H	SIG_H
001	alp08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	498	1	497	1	0	2	494	411	0.11	0.27	0.13	0.25	0.14	0.58	0.17	0.37
002	alps17	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	194	0	194	0	0	0	194	182	-0.04	0.15	-0.13	0.18	-0.13	0.37	0.13	0.23
003	basc08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	206	0	206	3	3	0	200	183	0.03	0.29	0.03	0.29	-0.37	0.59	0.04	0.41
004	cat08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	187	29	158	9	0	0	149	147	0.08	0.17	-0.01	0.18	0.06	0.42	0.08	0.24
005	cgn08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	54	0	54	0	0	2	52	51	0.03	0.22	0.03	0.25	-0.08	0.55	0.04	0.34
006	cgn14	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	1128	0	1128	3	2	15	1108	1025	0.07	0.23	-0.05	0.23	0.06	0.58	0.09	0.32
007	ch08	0E+00/0E+00/0E+00	0.00/ 0.00/	0.00	213	0	213	2	0	0	211	211	0.06	0.14	-0.09	0.15	0.07	0.32	0.11	0.20
008	ch081	0E+00/0E+00/0E+00	0.00/ 0.00/	0.00	66	0	65	0	0	0	63	62	0.00	nan	0.00	nan	0.29	0.31	0.00	nan
009	ch16	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	432	0	432	2	2	0	428	260	0.00	0.10	0.02	0.14	0.06	0.30	0.02	0.17
010	epn14	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	237	0	237	2	0	0	235	235	0.00	0.14	0.02	0.11	-0.16	0.32	0.02	0.18
011	epnd14	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	2014	84	1930	3	1	4	1922	1569	-0.06	0.25	-0.04	0.21	-0.24	0.53	0.07	0.33
012	esp08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	341	0	341	9	1	7	324	292	-0.13	0.36	-0.07	0.27	0.46	0.71	0.15	0.45
013	gr08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	179	0	179	1	3	1	174	146	0.22	0.43	0.09	0.45	0.44	0.82	0.24	0.62
014	gsrm14	5E-02/5E-02/0E+00	-0.49/-0.48/	0.00	21428	0	21428	4	487	5	20932	1256	0.03	0.62	0.06	0.53	0.00	nan	0.07	0.81
015	gurn08	1E+00/1E+00/0E+00	0.00/ 0.00/	0.00	76	0	76	2	0	0	74	49	0.08	0.17	0.05	0.21	0.00	nan	0.10	0.27
016	gurn08d	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	1329	0	1329	0	0	0	1329	122	0.02	0.08	0.05	0.13	0.05	0.37	0.05	0.16
017	gut14	1E+00/1E+00/1E+00	0.35/ 0.00/	0.00	336	0	336	0	0	0	336	94	0.04	0.18	-0.06	0.18	-0.24	0.47	0.07	0.26
018	hepos	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	60	0	60	0	0	1	59	47	-0.14	0.36	0.28	0.39	-0.88	0.86	0.31	0.54
019	igs08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	103	8	95	1	0	1	93	91	0.03	0.18	-0.04	0.19	-0.13	0.42	0.05	0.26
020	it08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	663	0	663	53	0	14	596	510	-0.13	0.34	0.00	0.26	0.13	0.76	0.13	0.43
021	itrf14	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	148	0	148	6	1	2	139	136	-0.02	0.15	-0.02	0.15	-0.31	0.32	0.03	0.21
022	nkg03	1E+01/1E+01/1E+01	0.00/ 0.00/	0.00	29293	0	29293	0	72	0	29221	125	0.04	0.06	0.01	0.03	0.09	0.08	0.04	0.07
023	noqu08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	76	0	76	0	0	0	76	75	0.04	0.14	0.03	0.16	0.45	0.48	0.05	0.21
024	rgp08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	544	0	544	184	3	1	356	350	-0.17	0.22	0.03	0.27	-0.10	0.53	0.17	0.34
025	walp08	1E+00/1E+00/1E+00	0.00/ 0.00/	0.00	182	2	180	1	0	0	179	175	0.21	0.18	0.21	0.28	0.37	0.47	0.29	0.33
тот						124	53707	286	575	55	53541	2403								

A list of outliers and deleted sites (ARA: basc08) is provided: <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html</u>

Outlier rejections

eurst

DEL																			
MAI	N																		
**	* MAN:	ACOR	43.4/	-8.4	from	basc08	deleted	(VNEU	-	0.21/	2.79/	-3.02	mm/y)						
**	* MAN:	ALBA	39.0/	-1.9	from	basc08	deleted	(VNEU	=	-0.21/	-1.59/	-7.89	mm/y)						
**	* MAN:	MOLI	40.8/	-1.9	from	basc08	deleted	(VNEU	=	-2.93/	1.54/	-3.95	mm/y)						
ουτ																			
**	* OUT:	LAGO	37.1/	-8.7	from	basc08	deleted	(VNEU	-	11.68/	-1.78/	0.40	mm/y,	Median	-	0.70/	-2.08/	-0.7	5 mm/)
**	* OUT:	SFER	36.5/	-6.2	from	basc08	deleted	(VNEU	-	-2.10/	-0.88/	3.74	mm/y,	Median	=	0.35/	-3.96/	-0.0	4 mm/y
	*	TERC	20 7/	27.2	from	h	deleted	(MALE LI	_	E 10/	4 22/	0 66		Median	_	0.04/	2 17/	36	E

In the MANUAL deleted case, the time series are OK: ACOR: well-known A Class with high Eastwards Velocity ALBA: well-known A Class with high Downwards Velocity MOLI: EPN D with high Downwards Velocity

http://www.epncb.oma.be/_productsservices/coordinates/img/FPN_FTRF2014_NF.png

A list of outliers and deleted sites (ARA: basc08) is provided: <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html</u>

Validating Results (AC-level)

Our solutions (ARA: basc08) are compared with other ACs: http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html

Cross validations in mm/y

(Sortable table)

SOL1	SOL2	NUM	MEAN_N	SDEV_N	MEAN_E	SDEV_E	MEAN_U	SDEV_U
basc08	alp08	1	-0.14	nan	-0.15	nan	-1.38	nan
basc08	alps17	з	0.14	0.04	-0.01	0.25	-0.32	0.30
basc08	basc08	200	0.00	0.00	0.00	0.00	0.00	0.00
basc08	cat08	45	0.01	0.29	-0.03	0.40	-0.64	0.70
basc08	cgn08	0	nan	nan	nan	nan	nan	nan
basc08	cgn14	46	-0.12	0.47	0.03	0.44	-0.69	0.90
basc08	ch08	11	-0.01	0.31	0.12	0.42	-0.42	0.44
basc08	ch081	1	0.00	nan	0.00	nan	-1.04	nan
basc08	ch16	11	0.03	0.31	-0.01	0.43	-0.39	0.44
basc08	epn14	41	-0.09	0.37	-0.05	0.36	-0.25	0.83
basc08	epnd14	139	0.09	0.32	0.10	0.40	-0.16	0.66
basc08	esp08	156	0.16	0.59	0.08	0.48	-0.95	1.21
basc08	gr08	1	-0.24	nan	-0.25	nan	-0.58	nan
basc08	gsrm14	89	-0.17	0.74	-0.29	0.51	0.00	nan
basc08	gurn08	1	-0.16	nan	0.20	nan	0.00	nan
basc08	gurn08d	0	nan	nan	nan	nan	nan	nan
basc08	gut14	1	0.09	nan	0.23	nan	-0.71	nan
basc08	hepos	0	nan	nan	nan	nan	nan	nan
basc08	igs08	10	-0.01	0.31	0.01	0.53	-0.05	0.75
basc08	it08	2	0.12	0.06	0.06	0.01	-0.34	0.25
basc08	itrf14	20	-0.01	0.43	-0.05	0.37	0.14	0.86
basc08	nkg03	0	nan	nan	nan	nan	nan	nan
basc08	noqu08	1	0.02	nan	0.19	nan	-1.43	nan
basc08	rgp08	35	0.15	0.67	-0.14	0.72	-0.04	1.06
basc08	walp08	14	-0.17	0.38	-0.53	0.50	-1.11	0.99
MEAN			-0.02	0.38	-0.02	0.42	-0.52	0.72
SDEV			0.12	0.20	0.18	0.16	0.47	0.29

Each site (ARA: basc08) can be compared with other solutions: http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html

Station residuals in mm/y

(Sortable table)

							IS in mm	on of AC	comparis	/elocity o													,	
_		· · ·	0 mm/y	5 +- 0.3	N: 0.0										1.5	IUM	IVVI r	IVHI	VU	VE	VN	AT/LON	•	STATION
	4 ACs														0.5	4	0.33	0.32	-0.33	-0.07	-0.31	700/-006.352]	[+4	[ACNS]
													•		-0.5	2	0.20	0.04	-0.20	0.04	0.00	04/-003.222]	[+3	[ADSJ]
															-1.0	з	0.59	0.55	-0.59	0.38	-0.40	49/-001.931]	[+4	[AGRD]
		i il » »	<u> </u>	4		4 0		∞ 4	i i ≠ ∞	4 4	9	4 %		- 6	-1.5 Li	з	2.03	0.51	-2.03	-0.45	-0.25	04/-015.446]	[+2	AGUI]
		rgp0	oqu0	itrf1	igs0	gut1	0uni 80ui	gr0	esp0	epn1	i i i	ch0	cat0	alps1	alp0	3	0.49	0.37	-0.49	0.19	-0.32	216/-002.274]	[+4	AJAL]
		>	-							•				- 1	15 -	8	0.42	0.10	-0.42	0.06	0.08	339/-000.481]	[+3	ALAC]
		· · · · · ·	7 mm/y	7 + 0.1	E: -0.5										1.0 -	3	1.34	0.54	-1.34	-0.35	-0.41	64/-017.241]	[+2	ALAJ]
															0.5	4	0.47	0.23	-0.47	-0.01	0.23	754/-002.332]	[+4	ALDA]
															0.0	2	0.22	0.41	0.22	0.04	-0.40	85/-015.780]	[+2	ALDE]
															-1.0	з	0.39	0.20	-0.39	-0.05	0.20	11/-005.444]	[+3	ALGC]
			<u> </u>	4		4 0		<u> </u>			 				-1.5 Li	2	0.04	0.14	0.04	0.11	0.08	42/-000.067]	[+3	[ALMA]
		alp 0	nkg0 pqu0	itrf1	igs0	gut1	um0 m08	gr gr	n odsa	epul,	ch0	ch0	cat0	asc0	alp0	6	1.34	0.29	-1.34	0.20	0.21	353/-002.459]	[+3	ALME]
		>					6 n	5		~ a		-		e 9	30	з	0.61	0.38	0.61	0.25	-0.29	706/-004.180]	[+3	[ALMO]
			1 mm/y	2 +- 0.7	U: -1.5										2.0	4	0.70	0.67	-0.70	0.59	0.30	863/-002.441]	[+3	ALMR]
															1.0 -	6	0.82	0.18	-0.82	-0.02	0.18	392/-002.164]	[+4	ALSA]
													•	_	0.0	4	0.67	0.27	-0.67	-0.07	0.26	56/-003.004]	[+4	AMUR]
															-2.0	4	0.35	0.25	0.35	0.18	0.17	40/-004.030]	[+3	ANDU]
		i i i		-		1 I		<u> </u>							-3.0 Li	3	0.30	0.29	-0.30	-0.24	-0.17	23/-014.014]	[+2	ANTI]
		ab01	nkg0	itrf]	igs0	gut1.	um0 m08	gr gr	in lodsa	Inda	ch0	ch0	cat0	asc0	alp0	з	0.53	0.21	-0.53	-0.07	0.20	394/-006.565]	[+3	ARAC]
		\$					0 0	5		- 0				<u>م</u>		2	0.13	0.18	-0.13	0.15	-0.09	25/-003.613]	[+4	ARAN]
													19	:48:11 20	3 Feb 20 15	2	0.18	0.28	0.18	0.26	0.10	66/-003.743]	[+4	ARDU]
(print	ACNS	Site · A														2	0.41	0.58	0.41	-0.18	-0.55	/61/-015.681]	[+2	[ARGU]
7/12 Nmax = 1.9	2015/07/12									20						3	0.27	0.24	-0.27	0.11	0.21	07/-005.083]	[+4	ARSP]
Nmin = -2.9 Emax = 3.0	N:-0.84									15						з	0.12	0.13	-0.12	-0.09	0.10	57/-006.055]	[+4	ASTO]
Emin = -2.7	E:0.82									15						2	0.15	0.57	-0.15	-0.51	0.26	64/-004.678]	[+4	[AVI2]
Umin = -6.5										10	_					3	1.00	0.11	-1.00	0.03	0.11	66/-005.906]	[+4	AVLS]
raw data			<u>∼</u> 1.	10				h		5	8					2	0.49	0.31	0.49	0.21	-0.23	394/-006.989]	[+3	[BADJ]
csv data	man man man and man	- A	VN .	mal	NA .	AM		MM.		_	0					2	0.15	0.37	-0.15	-0.15	-0.33	15/+000.503]	[+4	BAR0]
	Aron Dolling as with prabat wall	- Marine	my	M	all we we	have	N.	my		0	-					6	0.03	0.19	0.03	0.08	0.17	05/+002.004]	[+4	[BCLN]
		www.		N	1 1/10		my .	Y		-5	00		_			2	0.69	0.51	-0.69	-0.51	0.02	374/+001.762]	[+4	[BELØ]
										-10	C	ies	Se	A T	AR/	9	0.01	0.39	0.01	-0.15	-0.36	00/+001.401]	[+4	BELL]
										10			00		, u v	2	0.23	0.05	0.23	0.04	-0.03	54/-005.881]	[+3	[BENI]
								1	1	-15						7	0.41	0.20	-0.41	-0.19	0.05	72/-001.537]	[+4	BIAZ]
10 u 10		n 16	15 1-	5 kr1	lan 1	1114	14	12 1	L let							8	0.18	0.94	-0.18	0.93	-0.05	05/-000.083]	[+3	[BORR]
ia jui ia	Juino Janny Juiny Janno Juino Janne Jui	1116 J	ID JS	5 Jui	Jan 1	ui 14	11 14	13 J	Jui							13	0.38	0.24	-0.38	-0.01	0.24	80/-004.497]	[+4	[BRST]

Each site (ARA: basc08) can be compared with other solutions and SORTED by any column: <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html</u>

Station residuals in mm/y

(Sortable table)

Each site (ARA: basc08) can be compared with other solutions and SORTED by any column: <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/003.html</u>

Station residuals in mm/y

(Sortable table)

STATION	LAT/LON	VN	VE	vu •	[VH]	[vv]	NUM]
[VALA]	[+41.703/-004.708]	0.49	0.50	-2.35	0.70	2.35	6	1
[AGUI]	[+27.904/-015.446]	-0.25	-0.45	-2.03	0.51	2.03	з	
[MORJ]	[+28.052/-014.360]	-0.28	0.06	-1.92	0.29	1.92	2	
[TNØ2]	[+28.418/-016.551]	0.01	-0.14	-1.86	0.14	1.86	2	
[MADR]	[+40.429/-004.250]	0.04	0.93	-1.71	0.93	1.71	з	
[GATA]	[+41.106/-008.589]	-0.65	0.19	-1.65	0.68	1.65	7	
[LLIV]	[+42.478/+001.973]	0.23	0.18	-1.59	0.29	1.59	10	
[RIBE]	[+43.464/-005.067]	-0.08	0.03	-1.43	0.08	1.43	2	
[ALAJ]	[+28.064/-017.241]	-0.41	-0.35	-1.34	0.54	1.34	з	
[ALME]	[+36.853/-002.459]	0.21	0.20	-1.34	0.29	1.34	6	
[CORI]	[+39.982/-006.520]	0.21	-0.28	-1.34	0.35	1.34	4	
[BUOS]	[+41.588/-003.068]	1.14	0.23	-1.33	1.16	1.33	з	
[VDGO]	[+42.516/-004.011]	0.29	0.35	-1.26	0.45	1.26	4	
[ZARA]	[+41.633/-000.882]	0.11	-0.09	-1.24	0.14	1.24	9	
[HUOV]	[+37.402/-001.942]	0.14	0.16	-1.21	0.21	1.21	4	
[LUAR]	[+43.547/-006.528]	0.14	0.01	-1.16	0.14	1.16	з	
[VIGO]	[+42.184/-008.813]	0.16	-0.09	-1.10	0.18	1.10	7	
[LENA]	[+43.150/-005.825]	0.23	0.16	-1.08	0.29	1.08	з	
[PLAN]	[+41.419/+001.987]	0.23	0.23	-1.05	0.32	1.05	5	
[LARE]	[+43.405/-003.447]	0.34	-0.08	-1.04	0.34	1.04	4	
[REUS]	[+41.170/+001.169]	0.21	0.45	-1.02	0.50	1.02	5	
[AVLS]	[+43.566/-005.906]	0.11	0.03	-1.00	0.11	1.00	з	
[LAZK]	[+43.035/-002.187]	0.14	0.13	-1.00	0.19	1.00	5	
[JACA]	[+42.567/-000.727]	0.09	0.19	-0.99	0.21	0.99	5	
[STJV]	[+41.925/+002.319]	0.21	0.19	-0.94	0.28	0.94	2	
[CANT]	[+43.472/-003.798]	-0.19	0.16	-0.93	0.25	0.93	8	

ARA T. Series

In this case, LLIV seems to need some polishing!

Walidating Results (yet another AC)

Similar procedures can be carried out for all the Acs (UPA: it08) : <u>http://pnac.swisstopo.admin.ch/divers/dens_vel/020.html</u>

Station residuals in mm/y

(Sortable table)

STATION	LAT/LON	VN •	VE	VU	[VH]
[CAM3]	[+43.145/+013.067]	-2.21	-0.49	-0.13	2.26
[MILO]	[+38.008/+012.584]	-2.14	0.59	0.44	2.22
[MGRD]	[+45.975/+012.015]	-1.92	-0.34	0.26	1.95
[MITT]	[+46.685/+011.295]	-1.84	-0.05	-0.65	1.85
[MANT]	[+45.160/+010.789]	-1.51	-0.30	0.05	1.54
[BACU]	[+42.364/+020.072]	-1.42	-1.14	1.36	1.81
[ROVR]	[+45.647/+011.072]	-1.38	-0.20	0.05	1.39
[LODØ]	[+45.287/+009.473]	-1.32	-0.20	0.07	1.33
[GNAL]	[+42.584/+013.520]	-1.30	-0.12	-1.29	1.31
[VLSM]	[+38.177/+020.589]	-1.22	-0.04	0.52	1.22
[PONT]	[+38.619/+020.585]	-1.22	-0.69	0.27	1.41

(Velocity CONSTRAINED TO ERIC)

MILO+ERIC span for more than 3 years.... MILO & ERIC should be excluded from the UPA solutions.

Validating Results (last one!)

In most cases, we see agreement:

2D: below 0.5 mm/year level; Vertical: 1 mm/yr in the Up!!!

tasks of Amsterdam-Splinter

- Common web exchange platform
 - Feedback from the combination to the providers partly prepared → web page available
- Visualization tools (kml ?) → test viewer available
- Prototype interface to WG "Deformation" established → values send und used (EGU 2019, EUREF 2019)
- Data input cleaning (current provider): Check solutions, update solutions
- Networking:

 \checkmark

 \checkmark

- Connection to geophysical/seismic community → various institutions extremely interested already, because no longer limited to national borders. Help notifying activity in your country
- Volunteering persons to the WG (provider/user) \rightarrow continue work
- Velocity model: → basic models for data checks, fine models for EU Dense velocity model (long-term goal) – co-workers are welcome