NKG GNSS ANALYSIS CENTRE

ITRF2014 densification for the Nordic and Baltic countries

Sonja Lahtinen, Lotti Jivall, Tarmo Kall, Karin Kollo, Ksenija Kosenko, Karolis Galinauskas, Dalia Prizginiene, Oddvar Tangen, Mette Weber, Pasi Häkli

BACKGROUND

- Motivation
 - Dense and homogenous velocity field for Nordic and Baltic countries
 - For national reference frames related tasks
 - For geodynamic studies (land uplift etc.)
- NKG GNSS Analysis Centre
 - Launched in 2012
 - Started with operational processing on weekly basis in 2014
 - Continued with reprocessing
 - Finished a densified ITRF2014 position and velocity solution with uncertainties

METHODS OF NKG GNSS AC

- Backbone solution: NKG-EPN solutions
- Eight national analysis centres
 - Own national stations
 - EPN stations for combination
 - Reference station (IGS/ITRF14)
- Subnet solutions
 - All Bernese solutions
 - Followed EPN's guidelines for its ACs
- Combination of subnet solutions
 - Both using ADDNEQ2 (Bernese) and CATREF

METHODS OF CUMULATIVE SOLUTION

- Reprocessing RINEX data 1997.0–2017.1
 - Daily solutions with 3 and 10 degree cut-off angle
- Combination of subnets into daily solutions (CATREF)
- Time series analysis mainly manually utilising Tsview software
 - Bad data, discontinuities
 - Rejections into daily SNX files before combination
- Cumulative solution using CATREF
 - Both positions and velocities
 - Constraints between co-located stations (twin stations)
- Uncertainties for velocities using Hector

TIMESERIES PRE-ANALYSIS

- Roughly 300 stations
 - 8 analysis centres with local knowledge
 - Systematics due to snow
- Discontinuities
 - Antenna changes based on site logs
 or similar
 - Considered receiver/firmware change effects
 - Unknown changes most challenging

From Northern Finland: UP

TREE-GROWTH EXAMPLE

EUREF Symposium 2019, Tallinn

TWIN STATIONS DIFFERENCES

- Some of the Swedish twin stations had trends in horizontal residuals
 - Originating from velocity differences btw old (~20 years) and new (~6 years) station
 - Differences up to 0.3 mm/y
 - No link to the time span of the time series
 - Decided to remove constraints on all Swedish twin
- Similar size of differences at other twin?
 - Not observed yet

3 AND 10 DEGREE SOLUTIONS

- Can we see any effects of changing cut-٠ off angle at sites during time span?
- Largest differences mostly in short time ٠ series
- No systematical differences ٠
 - 3 deg solutions as final solution

Horizontal: arrows Vertical: circles scaled by the time series length

FINAL ITRF2014 VELOCITIES

UNCERTAINTIES

- Realistic uncertainties needed for e.g. land uplift modelling
- Main alternative noise models
 - General power-law + white noise
 - Flicker noise + white noise
- Residuals of the CATREF solution as an input
 - Analysed individually for each station and its components (NEU)
 - Discontinuities as in CATREF solution
- Special case: uncertainties for the constrained twin stations
 - Final velocity a weighted mean of the two stations (approximately)
 - Final uncertainty using error propagation law
 - Time series length as weighted

11

DIFFERENCES: FLICKER VS POWER-LAW NOISE

- Horizontally roughly equal (less than 0.05 mm/y difference)
- Vertically power-law gives slightly larger near GIA maximum
 - But some overestimated uncertainties found if shorter time series
 - Power-law not fitting in power spectra density plot
- Flicker noise more robust to be used for all stations

Vertical difference: Powerlaw – Flicker noise

FINAL UNCERTAINTIES (1σ)

Horizontal

Vertical

12

OUTLOOK

- Produced a high quality solution
- Results will be published
 - Velocities for stations with min 3 years of data (epochs)
 - Manuscript submitted in April
- Continue the work by stacking new data
 - Quite many newly established stations
 - Some more automatic procedures especially for snow data