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The topic developed in this paper tries by means of a simulation
to perform a comparative study between the performances of
two multi-frequency GNSS (Global Navigation Satellite System)

which are not yet in full capability:
** Modernized GPS
and

*» Galileo.

Performance include:

Time to fix ambiguities ‘ High success rate

Precision of coordinates ‘ static relative positioning
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Case of long baselines (>100 Km ):

Estimation of atmospheric delay makes the observation
model weak

Considering the double-differenced (DD):

Atmospheric delays as quantities of stochastic nature, the
number of unknowns in this case decreases and leads to
the reduction of time of fixing ambiguities
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To reach our purpose:

Focus on the stochastic model mmmm) takes into account the
following effects:

+* Mathematical correlation

+»* Spatial correlation (depends on baseline length)

*+* Dependency of noise with satellite elevation angle.
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Cts Quantifying the spatial correlation

Spatially correlated errors are specifically the followings:

L1 Orbital errors

and

L Atmospheric delays (lonospheric and tropospheric delays).

Approximately® (DD) orbital errors (aDDap) with respect to the length of
baseline b for GPS GALILEQ are;

O'DD(gp(C'ﬂl) = 0,0071 b(Km) ...... GPS (1)
ppsp(cm) = 0,0061 b(Km) .....GALLILEO (2)

*Establishment of these formulas is based on Zero-Differenced (ZD or un-differenced) orbit error o5;,=1m. In fact, this value corresponds to the
broadcast precision of GPS constellation published by IGS (International GNSS Service)
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== Assumptions

Formulas (1) and (2) denote that for DD and for GPS:
Orbital error standard deviation amounts is about 1.5 mm for 20 Km baseline

Standard deviation of ZD orbital errors reaches about 1 m
Due to:

Spatial correlation among the ZD orbital errors.

We try to estimate approximately the amount of this correlation.

DDép* = 6p; — 6p7 — 6p5 +6p1 (3)

agmp = var(DDé6p®) = var(6p3) + var(6p7) + var(8p3) + var(6p]) + 2[—cov(8p3,8p37) —
cov(8p3, 8p3) + cov(8p3,6p7) + cov(8p3, 6p3) — cov(8p3, 6p7) — cov(8p3, 6p7)] (4)
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We make these approximations

-The variances for ZD orbital error are assumed equal.

var(8p3) = var(8pf) = var(6p}) = var(6p}) = o5, (5)

-The covariances between orbital errors belonging to different satellites is assumed
null, this means

cov(6pz,0pz) = cov(bpz,6p1) = cov(dpi, pz) = cov(dpi, 6p1) =0 (6)

Also, we consider that

cov(6p3,6p1) = cov(dpy, 6p1) = G(5p,.6p,) (7)

Equation (7) is so called spatial correlation model
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We consider the covariance 65, 5,,) constant whatever the satellite s and r

After making these approximations, the variance of DD error becomes then:

2 2
ppsp = 4(05p — O (sp,.8p1)) (8)
from which we can conclude that the covariance g, s,,) IS pOsitive

Thus the covariance between d p, and 6 p; can be determined by:

O(5p2.6p1) = Uazp — T4 (Spatial correlation model)
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This model:

Knowing Variance of the ZD and DD error,

Estimate Approximately the value of covariance

m The value of covariance that exists between individual errors.

By the same model we can estimate approximately the spatial correlation
values relative to the tropospheric and ionospheric delays (using values
provided in table 1) in order to build the stochastic model.
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Equation (9), we adopt a simple spatial correlation formulation for the stochastic
model. We assume also that all the DD errors which are of the same type having the
same standard deviation. The temporal correlation and the elevation angle
dependency have not been considered in this simple formulation.

The following table provides the values of standard deviations of DD tropospheric
and ionosphere delays for different baselines.

Baseline
Short Medium Long
(0-20 Km) (20-100 Km) (100-500 Km)
oppr (0,2-0,5 ppm) <l cm ~2.5 cm <20 cm
Errors in DD oppr 15t order on L1 <10 cm <40 cm <100 cm
oppr 2" order on L1 <0.5 cm <1 cm <2 cm

Tab 1: Standard deviations of atmospheric delays in DD for short, medium and long baseline
[Feng 2008].



&

Cts
Observations equation for single epoch

Before describing the observations equation, we start by noting that the ionospheric
delay can be approximated by these models respectively [Datta-Barua et al 2008],
[Alizadeh 2013]

Lyy=afI®+ail®, k=125 (10)

Ipg = —ail® — 31(2) , k=125 (11)

JES

with: a, === and f; the frequency k. I, x, ¢ vector of DD ionospheric delays on

frequency k, approximated to the second order on code and phase respectively. (1), [(2)
vector containing respectively the first and second order terms of the ionospheric delay
on L1.

The observations equation at a single epoch i for triple-frequency GNSS, can be written
as

[Pi] _[-(e3®F) 1)] o

Pl l-(es®F) (A ®Im
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=[S+ [ 2] B2 o
(es 1) (f 1) ( 1)

T denotes respectively: DD orbital error, tropospheric delay. v; 5, vV; ¢
noise (including multipath) on code and phase respectively.

f=01 a ail"
h=[1 a3 ]’

a,, as as defined previously.
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Stochastic model

In the stochastic model described below by equation (15), the following assumptions are made

The mapping function for code noise is assumed identical to carrier phase noise. The
mapping function is chosen to be exponential that takes the form

m(e) =p+qe"° (14)
with e : elevation angle. p, q, r constants.

- In addition, we consider no correlation between different types of errors since they come
from independent physical processes. For example, there is no need to consider that the
ionosphere and troposphere effects are correlated.

- Model given by (9) is implemented to account for spatial correlations between individual
errors,

- The temporal correlation is neglected in the stochastic model to avoid inverting a large and
fully populated variance covariance matrix of measurements,

- Nocross-correlation between signals, since we assume that the signals in either modernized
GPS or Galileo will be likely non-correlated.
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Applying the variance propagation law, then the variance covariance matrix of
observations at epoch i takes the form

Qp,i Qp(b,i

T
Qpcb,i QCD,i

QSi =

] (15)

g .
where: ¢; = [ gg’l_] denotes the vector of unmodelled errors. The blocks Q,; Q,i Q¢
R

are expressed as:
Qpi=75 (5,DopST)®Tn—1 + D,@(M20T) (16)
Qv =5 (SDppS)®Tn—1 (17)
Qo= 5 (S6DppSh)®Tn1 + De®(2MZ0T) (18)

- 1
with: Sp = [83 €3 f h] ; S(p — [83 €3 —f —Eh]



We note that the ZD variances of spatially correlated errors are cancelled out in
the development of the stochastic model.

Matrix Dpp uses the values given by the formulas and table 1 above. The table
2 below is used to construct the matrices D, and D .

o -

20 20 15 20 20 15
o phase (mm) 2 2 1.5 2 2 1.5

Tab 2 : Standard deviations for ZD noise at zenith for high-end receiver [Nardo 2015].



Ambiguity resolution (review of LAMBDA method)

After obtaining the float solution i.e. ambiguities and other estimates by
least squares method, the ambiguities need to be fixed on the correct
integers: this step is what we call ambiguity resolution; an advantage of this
technique is it allows an improvement of the precision of the other
estimates of interest. In this work, the ambiguity resolution method
LAMBDA (Least-squares Ambiguity Decorrelation Adjustment) known
among other methods by its high success probability of resolution is
implemented, see the advantages of LAMBDA method in [Teunissen et al.
2002]. The LAMBDA method was first introduced in 1993 by P. J. G Teunissen
in his paper [Teunissen 1993] and discussed in detail in [Teunissen 1995].
The LAMBDA method is performed into two steps: the first step is, the
reduction of correlation of ambiguities by Z-transformation i.e. find the
matrix Z that minimizes the product of diagonal elements of the
transformed covariance matrix Q;

Q:=Z2"QaZ(19)



Ambiguity search space defined by

(@-a)'Qz"(@—a) < x*(20)
a : vector of unknown integer ambiguities. ¥ : positive number sufficiently small.

Once the ambiguities are fixed (denoted &), the final or fixed solution b reads
b=b-Q5203'(a- ) (21)
Q5 = Q5 — Q5202 Q5,5 (22)

Measure the success of ambiguity resolution ‘ Success rate ‘

Bootstrapping (Lower bound of integer least squares success rate, difficult to compute)

=l

The bootstrapping success rate is given by
P, =TT, (20 (i) — 1) (23)

& (x) = J%ffm et dt (24)

where o;: the standard deviation of conditional ambiguity i. n : number of
ambiguities



Results
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Fig.1 : Time of ambiguity fixation with baseline variation for 5s left and 10 s right
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Fig 2: Variation of time of fix of ambiguities with baseline length for triple-frequency GPS (top) and triple-frequency
Galileo (bottom). Success probability: 99.9 %. 10 satellites continuously tracked.
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Fig 3 : Variation of the DOP (cycles) relevant of baseline length for double and triple-frequency GPS, triple-
frequency Galileo for 5 s and 10 s interval. Success probability: 99.9 %. 10 satellites continuously tracked.



Analysis

L)

% The GNSS performance that we focus on in this study, is essentially the time required to fix
ambiguities for different baseline lengths

/

s Integer ambiguities in the simulation are fixed by a success probability that exceeds 99.9%

*  GNSS observations are accumulated until a success probability of 99.9% is reached for each
baseline

In addition to the mentioned performance that we focus on, we investigate the effect of varying the
sampling time on the results.

/

s Figure I below shows the plot of the time required to fix ambiguities against the baseline length.

R

"  We can remark from figure 1 that there is no significant difference in behavior between the two
triple-frequency GNSS in terms of time required to fix ambiguities

» When observations are sampled at 5 s interval with a baseline of 500 km, the time to fix
ambiguities with a success probability of 99.9 % reaches about 13 min, whereas when choosing
a sampling time of 10 s, the time to fix ambiguities becomes 25 min

s The two triple-frequency GNSS behave almost by the same manner i.e. having fairly the same
time of fix for the same baseline and same sampling time

s Furthermore, it is clear from the figure 1 that the time of fix of ambiguities increases as the
sample time increases. Although the significant observation time (25 min) allows to change the
satellite geometry which is beneficial in decorrelating ambiguities, it appears not sufficient here
to achieve this.
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