

Report of the Troposphere Coordinator

R. Pacione

e-GEOS, ASI/CGS-Matera, Italy

Outline

- Key Milestone in the EPN Tropospheric Products
- GNSS-Meteorology Concept
- EPN ZTD Time Series
 - 2nd EPN Reprocessing Campaign: EPN-Repro2 (1996-2014)
 - Operational Solution (2015-today)
- EPN ZTD data exploitation
- Summary and next steps

Key Milestone

> 2001: Special Project

2008: Routine Operation

> 2012: EPN-Repro1: 1996-2009

2014: Troposphere Analysis Coordinator moved from BKG to ASI/CGS

> 2017: EPN-Repro2: 1996-2014

GNSS-Meteorology Concept

$$L_{rec}^{sat} = \rho_{rec}^{sat} + c \cdot (\delta t_{rec} - \delta t^{sat}) + \lambda \cdot N_{rec}^{sat} - d_{iono} + d_{tropo} + \mathcal{E}_{\phi}$$

$$d_{tropo}(\alpha, e) \equiv ZHD \times m_{h}(e) + ZWD \times m_{w}(e) + G_{N} \cos \alpha + G_{E} \sin \alpha] \times m_{G}(e)$$
Dry delay
$$N_{d} = k_{1} \cdot \left(\frac{P_{d}}{T}\right) \qquad N_{w} = k_{2} \cdot \left(\frac{e}{T}\right) + k_{3} \cdot \left(\frac{e}{T^{2}}\right)$$
Integrated Water Vapour
$$IWV = \kappa \cdot (T_{m}) \cdot ZWD$$

Current Status: EPN-Repro2 & Operational

http://www.epncb.oma.be/_productsservices/sitezenithpathdelays/

Mean ZPD biases wrt weekly EPN troposphere solution

(EPN-repro2 + routine)

EPN-Repro2 – from 1996 to 2014

EPN-Repro2 - From GPS wk 0834 to 1824

- > 5 Input Solutions
- 3 main GNSS SW (Bernese, Gamit, Gipsy)

5 (+3) Solutions

3 Bernese Solutions

3 Solutions (Full EPN)

- ASI (GIPSY, Full EPN)
- GOP (Bernese, Full EPN)
- LPT (Bernese, EPN sub-net)
- IGE (Bernese, EPN sub-net)
- MUT (GAMIT, Full EPN)

- GOP (Full EPN network)
- LPT (EPN Sub-network)
- IGE (EPN Sub-network)
- ASI (GIPSY)
- GOP (Bernese)
- MUT (GAMIT)

- > Different software
- Different networks
- > Same software
- > Different networks
- > Different software
- > Same network

Pacione, R., Araszkiewicz, A., Brockmann, E., and Dousa, J.: EPN Repro2: A reference GNSS tropospheric dataset over Europe, Atmos. Meas. Tech., 10, 1689-1705, https://doi.org/10.5194/amt-10-1689-2017, 2017

EPN-Repro2 – from 1996 to 2014 (cont'd)

COST ACTION ES1206 'GNSS4SWEC' Working Group 3: 'Use of GNSS tropospheric products for climate monitoring'

- > First Reference data set: IGS Repro1 1995-2010 global
- Second Reference data set: EPN-Repro2 1996-2014 Europe

ZTD trends

EPN-Repro2 – from 1996 to 2014 (cont'd)

EPN-Repro2 is a combined product.

Research Question:

Is there any 'loss of information' in performing the combination?

Wavelet analysis:

- 1. All 13 year-long time series have a very strong annual component
- 2. After removing it, finer features become visible
- 3. EPN spectra are similar

Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018

EPN-Repro2 - from 1996 to 2014 (cont'd)

Wavelet as 0 MATE

Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018

EPN-Repro2 - from 1996 to 2014 (cont'd)

Wavelet eu0 MATE

Santos M.C., Pacione R., Balidakis K., Dick G., Wickert J., Heinkelmann R., and Männel B.: On the combination of neutral atmospheric delay estimates from different solutions, EGU GA 2018

Exploitation of EPN-Repro2 dataset

Climate Model Simulation **ALARO Climate Model**

Berckmans J., Van Malderen R., Pottiaux E., and Pacione R.: Evaluation of the atmospheric water vapor content in the regional climate model ALARO-0 using GNSS observations from EPN Repro2, EMS Annual Meeting, 4–8 September 2017, Dublin, Ireland

European ReAnalyses

Ground-Based GNSS

Courtesy G.Halloran, UK MetOffice

Jam, the Netherlands

Operational Solutions

- Period: GPS weeks 1825 1996
- > 16 ACs: ASI, BEK, BEV, BKG, COE, IGE, IGN, LPT, MUT, NKG, RGA, ROB, SGO, SUT, UPA, WUT
- ➤ **Distributed Processing**: The EPN stations are distributed among the AC in such a way that each station is analyzed by at least three AC. This guarantees the reliability of the EPN products
- > GNSS SW: GIPSY-OASIS (1 AC), GAMIT (1 AC), BERNESE (14 ACs)
- Processing Options: refer to 'Guidelines for EPN Analysis Centres'

May, 23rd 2018: 323 EPN stations

	6 AC	5 AC	4 AC	3 AC
Station #	3	57	198	65
%	1	18	61	20

Operational – Total vs Combined Stations

E-GVAP

E-GVAP – The EIG EUMETNET GNSS Water Vapour Programme, Phases I-III (2004-2017)

- EIG EUMETNET Project coordinating the near real-time delivery of data from ~3000 GPS sites delivering > 14M ZTDs pcm.
- Focus is on GPS-only hourly processing, delivering only ZTD in 90mins.
- Operational assimilation at a few European National Met Services, many others under testing.
- Use of E-GVAP ZTDs has proven positive impact on NWP forecast skill.
- Surface T and P used for conversion to Integrated Water Vapour (IWV).
- Active Quality Control (AQC) in place.
- MoUs in place with EUREF and EUPOS.

Operational – Cumulative Solution

- > Tropospheric cumulative solution T1981, EUREF mail 9326
- Next update: October 2018

Operational – E-GVAP vs EPN

Earth-Space Propagation Experiment

- \triangleright GNSS-derive IWV can be used to derived water vapor attenuation, $A_{wv}[1]$
- \triangleright A_{wv} , plus dry air attenuation, get "clear sky" or gaseous attenuation
- ➤ Gaseous attenuation is used to derive total attenuation from beacon measurements in propagation experiments [2]

- Como EPN IWV data are compared with Milano IWV radiometric measurements
- ➤ Distance Como-Milano: ~37,5 km
- Preliminary results satisfactory.

Courtesy of G.Siles (UPB)

[1] G. Siles, J.M. Riera and P. Garcia-del-Pino, "An Application of IG to Propagation Studies: Validation of Radiometric Atmospheric Attenuation," in Antennas and Propagation, IEEE Transactions on , vol.64, no.1, pp.262-270, Jan. 2016S
[2] J. M. Riera, G. A. Siles, P. Garcia-del-Pino and A. Benarroch, "Alphasat propagation experiment in Madrid: Processing of the first year of measurements", Proc. of 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, April, 2016.

Summary and next steps

- > ZTD Products at the EPN stations available since 1996
- > EPN-Repro2 selected as the 2° community reference data set by 'GNSS4SWEC' WG3
- > Routine monitoring activities of the EPN AC troposphere solutions
- Routine inter-technique evaluation
- Next steps:
 - Horizontal Gradients evaluation
 - EVGA and EPN collocated stations
 - SINEX_TRO v2.0

