ITRF and seasonal station motions

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE Zuheir Altamimi Xavier Collilieux Kristel Chanard Paul Rebischung Laurent Métivier IGN, France Email: zuheir.altamimi@ign.fr

Motivations

- Seasonal signals :
 - Evaluate and understand technique differences at colocation sites
 - Concentrate on annual & semi-annual signals
 - Combine them at co-location sites
 - Provide them in a coherent Reference Frame (CM or CF/CN)
 - Provide a coherent annual geocenter motion model compatible with ITRF2014

Periodic signals: reference frame definition

- **CM : Center of Mass Frame**
- **CF : Center of Figure Frame**
- CN : Center of Network Frame

IERS Conventions:

$$\vec{X} = \vec{X}_{ITRF} - \vec{O}_G$$

is the vector from the ITRF origin to the instantaneous CM

Input data frame origin

Service/ Technique	Number of Solutions	Time span	# of sites	Theor. Origin
IGS/GNSS/GPS (Rebischung et al., 2016)	7714 daily	1994.0 – 2015.1 (21 yrs) Aligned (NNT, NNR) to IGS08	884	GPS CN
IVS/VLBI (Bachmann et al., 2016)	5328 daily	1980.0 – 2015.0 (35 yrs) Aligned (NNT, NNR) to a priori coord. frame (ITRF2008)	124	VLBI CN
ILRS/SLR (Luceri et al., 2015)	244 fortnightly 1147 weekly	1980.0 – 1993.0 1993.0 – 2015.0 (35 yrs)	96	СМ
IDS/DORIS (Moreaux et al., 2016)	1140 weekly	1993.0 – 2015.0 (22 yrs)	71	СМ

Using data from 2000.0 on

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Periodic Signals : General Equations

Sine & Cosine Function $\Delta X_f = \sum_{i=1}^{n_f} a^i \cos(\omega_i t) + b^i \sin(\omega_i t)$

→ 6 parameters per station & per frequency: (a, b) following the three axis X, Y, Z. → With respect to a secular (ITRF) frame we can write:

$$X(t)_{s} - \delta X(t)_{PSD} = X(t_{0})_{itrf} + \dot{X}_{itrf} \cdot (t - t_{0}) + T(t) + \Delta X_{f}(t)$$

If:

- $X(t)_s$ is SLR time series, then T(t) reflects the geocenter motion as seen by SLR. Same for any satellite technique <u>in theory</u>
- $X(t)_s$ is any time series <u>pre-aligned to ITRF</u>, then T(t) is zero.

Combination of Seasonal Signals?

<u>Approach 1:</u> Stacking of all 4 technique time series

- Adding local ties at co-location sites
- Imposing co-motions at co-location sites
- Seasonal Signals can be expressed in CM or CF(CN)

<u>Approach 2</u>: Combine individual seasonal signals from the 4 techniques:

- Adding similarity transformation between techniques
- Imposing co-motions at co-location sites
- Seasonal Signals can be expressed in CM or CF(CN)
- More flexible to investigate technique agreement
- Variance factor estimation based only on seasonal signals agreement at co-location sites

Stacking of time series & rank deficiency

Need to specify the reference frames for both station positions & velocities and the periodic signals: CM or CN

- 14 DoF to define the secular frame
- 14 DoF for each frequency, handled by:
 - Minimum Constraints (MC) : No net periodic Translation, Rotation, or/and Scale of a reference set of stations
 - Internal Constraints (IC): Zero periodic signals in Translation, Scale & eventually Rotation time series
- Note:
 - MC applied wrt a network of stations ==> CN Frame
 - IC wrt time series of transformation parameters ==> CM Frame (True for SLR and DORIS CM)

SLR Up annual signals : CM Frame

January

 $Dh = A.cos(2\pi f(t - t_0) + \phi)$

SLR Up annual signals : in CN Frame

January

 $Dh = A.cos(2\pi f(t - t_0) + \phi)$

Up annual signals : GNSS CN 2 Frequencies estimated (Ann + Semi-Ann)

Up annual signals : GNSS CN 4 frequencies estimated (Ann, Semi-Ann + 2 draconitics)

Altamimi et al. EUREF2018, Amsterdam

GÉOGRAPHIQUE

Diffs Up annual signals : GNSS CN 4 frequencies - 2 frequencies

GÉOGRAPHIQUE

Diffs Up annual signals : GNSS CN 4 frequencies - 2 frequencies

Std scaling factor of the multi-technique seasonal signal combination:

- with GNSS 2 frequencies: $\sigma_0 = 10.22$
- with GNSS 4 frequencies: $\sigma_0 = 10.11$

SLR: Diffs Up annual signals between CN SLR and CN GNSS

Altamimi et al. EUREF2018, Amsterdam

GÉOGRAPHIQUE ET FORESTIÈRE

Estimated annual translations <u>Approach 1</u>: Multi technique stacking : in CM SLR

Component	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)
SLR	* ~0	~0	~0	~0	~0	~0
GPS	1.29	135.6	3.29	-152.1	2.64	130.9
VLBI	2.15	125.7	3.24	-162.7	2.76	130.5
DORIS	** 3.37	-179.9	2.28	129.3	2.50	82.5
сы * Ex	spected		** No	t expected	d: should	be ~zero

Annual Geocenter motion : different estimates

	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)	
Approach 1: Stacking all 4 technique time series							
SLR CN: Uneven Network	2.2	119.8	3.0	-148.4	3.0	155.4	
SLR CN: 8 stations	1.6	107.3	3.7	-148.7	2.3	163.4	
SLR Via Multi- technique	1.2	114.6	3.8	-156.6	1.9	122.4	
Approach 2: Independent combination of seasonal signals							
SLR (GPS draconitic estimated)	1.2	121.0	3.7	-156.2	1.6	127.6	
SLR (Multitech Re- weighted)	0.9	118.8	3.5	-157.9	1.8	137.3	
SLR (Multitech Re- weighted GPS draconitic estimated)	0.9	120.4	3.6	-157.9	1.8	139.8	

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Approach 2: Combination of individual technique signals Level of agreement at co-location sites

Conclusion

- GNSS draconitic signals must be estimated for better estimation of ann. & semi-ann. signals
- Amplitude variations of Annual Geocenter motion from SLR (in mm):
 - $Gx \qquad 0.9 2.2 \qquad (\delta = \pm 1.3)$
 - $Gy \qquad 3.0 3.8 \qquad (\delta = \pm 0.8)$
 - $Gz \qquad 1.6 3.0 \qquad (\delta = \pm 1.4)$
- Fair agreement between the two approaches
- Level of agreement at co-location sites still to be carefully investigated:
 - Good agreements for some sites
 - Bad for other sites

