27th EUREF Symposium

NATIONAL REPORT OF SLOVENIA

Klemen Medved, Sandi Berk, Žarko Komadina, Jurij Režek

(Surveying and Mapping Authority of the Republic of Slovenia, Ljubljana)

Niko Fabiani, Katja Oven

(Geodetic Institute of Slovenia, Ljubljana)

Božo Koler, Miran Kuhar, Polona Pavlovčič Prešeren, Oskar Sterle, Bojan Stopar (University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana)

Wrocław, Poland, May 17–19, 2017

Presentation topics and highlights

- Terrestrial Reference Frame: "EUREF Slovenia 2016" GNSS Campaign
- National Combined Geodetic Network: In function since January 1, 2016
- Slovenian GBAS Network (SIGNAL): Towards a Systematical Quality Control of Network Services
- Local to ETRS89 Datum Transformation Model: *Improvements and Verification for the Cadastre*
- Vertical Reference Frame: *Towards a New Height Reference System New Quasi-Geoid Model*

Terrestrial Reference Frame

"EUREF Slovenia 2016" GNSS Campaign

- Conducted between August 22 and November 10, 2016
- 80 consecutive daily sessions with the mean epoch of 2016.75
- 46 passive GNSS sites occupied for at least 72 hours each
- 23 Slovenian continuously operating reference stations
- 51 other (IGS, EPN, APOS, CROPOS ...) reference stations
- ~12 km is the median baseline length for passive GNSS sites
- ~28 km is the median baseline length for Slovenian CORS sites
- ~178 km is the median baseline length for EPN and IGS sites

"EUREF Slovenia 2016" GNSS Campaign

Terrestrial Reference Frame

"EUREF Slovenia 2016" GNSS Campaign

- Data have been collected (~6000 daily RINEX files) and preprocessed (header checking and corrections, epoch analyses, conversion to v2.11 etc.)
- Need to resolve dilemmas concerning the ETRS89 realization (EUREF Questionnaire)
- The aim of this campaign is a new realization of ETRS89 in Slovenia

National Combined Geodetic Network (Zero-Order Netvork)

Operational since January 1, 2016

- 6 network sites with distances of ~100 km
- 8 continuously operating GNSS stations
 two of them are "double stations"
- Connected to levelling and gravimetric networks
- Local analytical centre is being established to produce daily solutions for all Slovenian permanent GNSS stations
- Will be proposed to be included to EPN

SIGNAL Network and Combined Geodetic Network

SIGNAL Network

- Slovenian GBAS network of 16 continuously operating GNSS stations (KOPE is also zero-order station, GSR1 is also EPN station)
- Decline of CSD modem connections, increase of use of MAC access points
- New network integrity and real-time service availability monitoring software
- New quality control of the RTK services based on field measurements – a special network of marked control points is being established for this purpose

Datum Transformation Model

National Local to ETRS89 Datum Transformation Model

- Triangle based transformation model of Slovenia is a continuous and reversible direct grid-to-grid (2D) transformation model
- The quality of the model was evaluated for ~2500 cadastral boundary points all over the country (80 test areas, mostly towns)
- 1600 additional tie points (80% increase) were determined to improve the transformation accuracy
- For most of the country, the sub-decimetre accuracy is achieved
- The new version (4.0) of the model is now ready to be used for transformation of national cadastral database into ETRS89

Improvement of transformation accuracy

Vertical Reference Frame

Towards a New Height Reference System

- Changing from normal orthometric to normal heights
- Changing from Trieste 1875 to Koper 2010 height datum
- Renewed and remeasured levelling networks (~2000 km)
- Renewed and remeasured gravimetric networks
- New adjustment by geopotential numbers
- Resulting in over 12,000 newly determined benchmarks heights
- To be implemented by 2018 ???

Closure Errors of Levelling Loops

Vertical Reference Frame

New Quasi-Geoid Model

- Referring to the future new height reference system
- Based on the new regional gravimetric survey
- Accuracy estimation based on over 800 control points gives standard deviation of computed geoid heights of 2.6 cm

National Report of Slovenia, EUREF Symposium 2017

Thank you for your attention