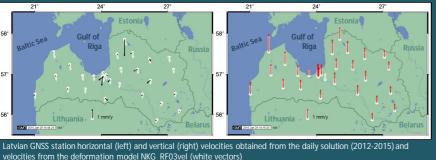


High precision techniques for Earth's crust movement observations in Latvia

Diana Haritonova^{1,2} (diana.haritonova@inbox.lv), Janis Balodis², Ansis Zarins², Augusts Rubans² ¹ Faculty of Civil Engineering, Riga Technical University; ² Institute of Geodesy and Geoinformatics, University of Latvia

The application of two principal space geodetic techniques: Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR), is under discussion in this study. The objective is to discover geodynamic processes of the Earth's crust in the territory of Latvia, placed at the coast of the Baltic Sea and at the edge of Fennoscandian land uplift phenomenon, by analysing GNSS time series obtained from Latvian GNSS permanent stations with reference to EUREF Permanent Network (EPN), and to develop additional observation device for relation to International Laser Ranging Service (ILRS) network.


Latvian GNSS station velocity fields

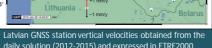
EUPOS®-Riga and LatPos station displacements have been summarized for the period of 8 years - from 2008 to 2015. Two solutions are presented: EUPOS® Combination Centre (ECC) cumulative weekly solution (2008-2014) and re-processed daily solution (2012-2015).

Steps	Institu-	Additional	ECC cumulative weekly solution	GGI daily solution	
	tion	description	(2008-2014)	(2012-2015)	
Data processing	GGI	Software	Bernese GPS Software	Bernese GNSS Software	
			version 5.0	version 5.2	
		Data sets	IGS and CODE databases	CODE database	
		Observations	GPS	GPS and GLONASS (since 1st day of 2015)	
		Fiducial	5 – 7 EPN (A and B-class)/IGS	9 EPN (A-class)/IGS stations	
		stations	stations		
			Daily solutions in IGS05/08:	Daily solutions in IGb08:	
Station			composed to weekly SINEX	ITRF2008-to-ETRF2000 one-step	
coordinates and	ECC/GGI	-	solutions and submitted to ECC for	transformation using 14 transformation	
transformations			further combination into a single	parameters according to	
			weekly EUPOS® solution	(Boucher and Altamimi, 2011)	
Time series	ECC/GGI	-	-	Corrections for offsets, outlier	
analysis and				elimination	
trend derivation				enmination	
Station velocities	ECC/GGI -		Horizontal velocities are expressed in the ETRF2000 frame, and velocities for		
and RMS values	200/001	-	Up compone	nent – in the ITRF2008	

Latvian GNSS station cumulative horizontal (left) and vertical (right) velocities from EUPOS observation set (till GPS week 1830) and velocities from the deformation model NKG_RF03vel (white vectors)

Results of ECC cumulative weekly solution have shown a positive tendency of vertical movements in the western and central parts of Latvia, and negative - in the eastern part. The resulting range of vertical velocities, after outstanding data elimination, is 2.05 mm/year; it is from -0.56 to 1.49 mm/year

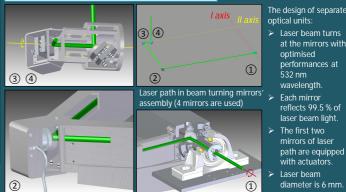
In the case of daily solution vertical velocity field is more homogeneous. Vertical velocities have positive sign for all stations. Resulting range is 1.16 mm/year: from 0.73 to 1.89 mm/year. According to the deformation model NKG_RF03vel vertical velocities of Latvian GNSS stations have range of


1.68 mm/year, with the minimum 0.04 mm/year and the maximum 1.72 mm/year

Vertical velocities of western GNSS stations from the daily solution correspond to the data of NKG_RF03vel. The highest velocity differences in vertical component are more pronounced in the case of stations located in south-eastern part of Latvia, however, these differences are less than 1 mm/year.

Station horizontal displacements have similar orientation for both solutions; velocities are mostly oriented to the South, but vectors have different magnitudes, however, values don't exceed 1 mm/year.

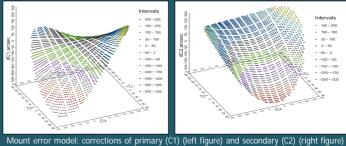
daily solution (2012-2015) and from the model NKG_RF03vel daily solution (2012-2015) and expressed in ETRF2000


Multifunctional optical tracking device for SLR purposes

SLR is a proven geodetic technique with significant potential for contributions to scientific studies of the solid Earth, its ocean and atmospheric systems. As SLR enables most accurate determination of the geocentric positions of Earth satellites, it provides a reliable reference system for monitoring of postglacial rebound, sea level and ice volume change

The study presents design of the universal satellite laser ranging device, as well as results of subsystem's functionality tests astrometric performed at the Institute of Geodesv and Geoinformatics (GGI) of the University of Latvia.

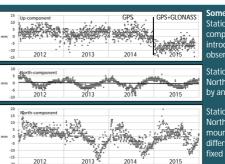
Installation of instrume



The device uses Alt-Alt mount with twin 16" (41 cm) optical tube assemblies. One of them is used for astrometric image acquisition, the other - as SLR receiver. A separate collimator is used for transmitted laser pulse handling.

Computer-controlled stepper motor drive is used for object tracking. Control software relies on mount error model to compensate mount deformations. The intended positioning accuracy is about a few arcseconds; presently 10 arcsecond accuracy level is reached. In order to improve accuracy of transmitted beam pointing, computer-controlled piezoelectric actuators are used for coudé path mirrors.

Astrometric subsystem supports system orientation and object coordinate determination in near-real-time. Position determination accuracy is up to a fraction of arcsecond. Objects up to about 15m magnitude can be observed in static mode, up to 18m - in star tracking mode. Astrometric subsystem can be used also for object auidina


Field tests of tracking device's astrometric subsystem have shown imaging and positioning performance close to what was expected for the design. Mount error model parameters were calculated (shown below); resulting positioning accuracy is already adequate for SLR purposes

GNSS time series and site-specific effects

axis rotation as functions of position

More evident outliers in coordinate time series of daily solution, usually occurred during the winter time, and single (one-day) extremes, which are out of the diapason of ±15 mm in Up component, were excluded. Time series were aligned from shifts due to GNSS antenna change and introduction of GLONASS observations in 2015.

ome examples: Station REZ1 time series in Up component with shift due to introduction of GLONASS observations in 2015

Station SALP time series in North component affected by annual variations

Station MAZS time series in North component. Antenna's mounting of this station differs from other; antenna is fixed on 8 meter long post