

2016 National Report of Germany

J. Ihde, G. Liebsch, A. Rülke, M. Sacher, U. Schirmer, W. Söhne, A. Stürze

Preparation for the Introduction of DHHN2016

Preliminary transformation model

- further measurements in 2nd order leveling networks by German countries
- inclusion of subordinated leveling networks (new or digital available old data) in the new reference frame
- Computation of a model for height transformation from old to new height reference frame by BKG (almost finished)
- Transformation model will be available free of charge in the internet
- 2017: synchronized introduction of heights: DHHN2016, quasigeoid: GCG2016, gravity: DHSN2016 and coordinates: ETRS89/DREF91/2016

New quasigeoid model GCG2016 in preparation

- New digital elevation model (DGM25)
- Improvement of the software for terrain corrections and geoid modelling
- First results: Comparison of 450 GNSS/leveling points with a 1st gravimetric geoid solution (considering only a corrective plane):

standard deviation 1.0 cm

min -3.6 cm

max 2.9 cm

New gravity data:

Gravimetric Survey of intertidal mudflats

- Almost no gravity data in the intertidal mudflats so far
- Measurements 2014 (red points in the map) and 2015: 416 points
- Measurements 2016: 59 points
- in cooperation with
 - Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein
 - Landesamt für Vermessung und Geoinformation Schleswig-Holstein
 - Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz
 - Wasser- und Schifffahrtsverwaltung
 - Landesamt für Geoinformation und Landesvermessung Niedersachsen

Seaborne gravity measurements in the Baltic Sea and the North Sea

2013: Baltic Sea, 10 days, 1500 km 2015 (April): Baltic Sea 10 days, 1600 km 2015 (June): North Sea 2016 (May 24 – June 02): Baltic Sea, 2000 km (red lines in the picture)

Cooperation with

- Landmäteriet Sweden
- DTU (Technical University of Denmark)
- Geoforschungszentrum Potsdam (GFZ)
- Bundesamt für Seeschifffahrt und Hydrographie (BSH)
- FAMOS project

FAMOS – ODIN Subactivity 2.4

- EU co-financed project lead by Sweden
- Objective of Subactivity 2.4
 - Pilot study: GNSS-real time positioning of the German Surveying Vessel "Deneb" owned by BSH using SSR correction data based on open standards
 - First campaign started May, 24

Modernization of German integrated geodetic reference network (GREF) - News since 2015

Titz (TIT2)

Sassnitz (SAS2)

BKG Ntrip Client (BNC) 2.12

- BNC's application areas are for example:
 - Decoding of RTCM, RTNET (exchange format for SSR data) streams
 - RINEX and SP3 or ASCII file input and output
 - Encoding and Upload of State Space Representation (SSR) messages
 - Encoding and Upload of ephemeris messages
 - Precise Point Positioning (PPP)
 - Combining of SSR messages from various real-time sources
 - Merging ephemeris messages from various real-time sources
 - RINEX file based Quality Check

BKG Ntrip Client (BNC) 2.12

- New or extended features:
 - Support of new GNSS signals (BDS, Galileo, and QZSS and SBAS)
 - Simultaneous multi-station Precise Point Positioning
 - Comparison of satellite orbit files in SP3 format
 - Broadcast Ephemeris Data Check
 - Full support of all BNC options via Command-line User Interface (CUI)
 - Support of RINEX v3 (long) filenames

BKG Ntrip Client (BNC) 2.12

Multi GNSS Support

			Observations	а органа		
000	4004 4004					
GPS	1001 – 1004 1071 – 1077	X	×		X X	
GLONASS	1009 - 1012 1081 - 1087	X X	X X		X X	
Galileo	1091 - 1097	X	X		X	
SBAS	1101* – 1007*	Х	Х			
QZSS	1111 – 1117	X	X			
BDS	1121* – 1127*	X	x		Х	
			Ephemerides			
GPS	1019	Х	×	Х	х	X
GLONASS	1020	Х	x	Х	Х	х
Galileo	1045 1046*	X X	X X	X X	×	
SBAS	1043*	×	x	×		
QZSS	1044	x	x	x		
BDS	63*	x	x	x	x	
		SSR Orbits, Ck	ocks, Combined Or	bits and Clocks		
GPS	1057, 1058 1060	X X	X X	X X	X X	X
GLONASS	1063, 1064 1066	X X	X X	X X	X X	X
Galileo	1240*, 1241* 1243*	X X	X X	X X	X X	
SBAS	1246*, 1247* 1249*	X X	X X	X X		
QZSS	1252*, 1253* 1255*	X X	X X	X X		
BDS	1258*, 1259* 1261*	X x	X X	X X	X X	
		SSR C	ode Biases, Phase	Biases		
GPS	1059 1265*	X X	X X	X X	X (X)	
GLONASS	1065 1266*	X X	X X	X X	X (X)	
Galileo	1242* 1267*	X X	X X	X	X (X)	
SBAS	1248* 1268*	X X	X X	X X		
QZSS	1254* 1269*	X X	X X	X X		
BDS	1260* 1270*	×	X X	X X	X (X)	
			SSR VTEC			
GNSS	1264*	X	Х	Х	(X)	

Multi station PPP

Real-time displacement-monitoring of the Integrated Geodetic Reference Network of Germany (GREF).

North, East and Up displacements referring to a XYZ reference coordinate; Number of GPS/GLONASS satellites.

Comparison of Satellite Orbits and Clocks

Visualization example of an orbit and clock data comparison:

SP3 file generated from BKG's GPS+GLONASS SSR

Combination IGS03 versus ESA's rapid solution; DOY 23, 2016.

IGS Real-Time Working Group

- In 2016, BKG (in person of Axel Rülke) took over the position as IGS RT WG chair
- Main goals and tasks are
 - Development of open RTCM standards
 - Extension of estimated RTCM SSR parameters (phase biases, VTEC, additional constellations) to improve global PPP
 - Clear product policy for IGS RT product
 - Completion of set of primary broadcasters
 - Reduction of latency of combined products