THE GEMNET PROJECT - GNSS THREAT QUANTIFICATION IN THE UNITED KINGDOM

M. Greaves Lead Consultant - Geodesy Presentation to EUREF 2016, May 2016

INTRODUCTION

- GEMNet was a collaborative project between Ordnance Survey the Satellite Applications Catapult.
- The Catapult is a not-for-profit, independent technology and innovation centre that connects businesses with the UK's research and academic communities
- There are many catapults for different areas of science, all of them overseen by Innovate UK which is the UK Government's agency for innovation.

AREAS THAT COULD BE IMPACTED BY GNSS VULNERABILITY

GEMNET SYSTEM DESIGN

- Monitor the GNSS radio spectrum at a number of UK locations in order to quantify the occurrence of jammers in operational environments;
- Capture "RF signatures" of jammers (both to understand the characteristics of threats, and to support aim 4 below);
- Assess the impact of jammers and other interference on operational GNSS receivers;
- Assess the impact that closer or more powerful jammers could have on GNSS receivers, i.e. different operational environments.

DATA OUTPUTS

Device	Outputs to GEMNet Database					
Sensor-1	12-bit In-phase (I) and Quadrature (Q) samples from the A/D					
	Converter, Jammer-to-Noise (J/N) ratio estimation, Received Signal					
	Strength Indicator (RSSI), Plots of the signal spectrum, spectrogram					
	and histogram.					
Sensor-2	Interference event reports, Interference classification, Normalised					
	signal power, Plots of signal spectrum and spectrogram.					
Survey-	Carrier-phase positioning solution (L1/L2), Number of visible					
Grade	satellites, Cycle Slips, Geometric Dilution of Precision (GDOP).					
Receiver						
Mass-	Code-phase positioning solution (L1 only), Number of visible					
Market	satellites, Automatic Gain Control (AGC) voltage level, Jamming					
Receiver	strength indicator.					

SENSOR 1 RESULTS

Event Statistics		Impact on normal Receiver output parameters				
J/N Ratio [dB], Sensor 1	Number of Events [%]	Average Change (compared to 90 seconds before the event)				
		C/N ₀ [dB-Hz]	Visible Satellites [%]		Horizontal Accuracy [cm]	
			Mass- market Rx	Survey- Grade Rx	Mass- market Rx	Survey- Grade Rx
≥5	10 [2 %]	↓1.3	↓ 1.9	↓ 8.1	↓ 3.0	\leftrightarrow
2 to 5	169 [29 %]	\leftrightarrow	\leftrightarrow	↓ 1.1	↑ 1.1	\leftrightarrow
1.76 to 2	406 [69 %]	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑ 1.9	\leftrightarrow
Total	585					

SENSOR 2 RESULTS

IMPACT OF HIGHER POWER INTERFERENCE ON GNSS RECEIVERS

IMPACT OF HIGHER POWER INTERFERENCE ON GNSS RECEIVERS - RESULTS

CONCLUSIONS

- Clear evidence of GNSS interference was collected
- Interference observed was of very low power
- Very occasional higher interference power
- Much of interference characteristic of deliberate low power jamming
- No discernible degradation in GNSS receivers
- HMI is possible
- Should operational jammers with 1000 times higher power than those operating today become common, then both mass market and survey grade GNSS receivers could often be compromised
- CNI sites may need better protection

RECOMMENDATIONS

- Strengthen and enforce legislation
- Standardise GNSS threat recording data parameters nationally and internationally, so that threat characteristics can be captured by platforms and detectors provided by multiple commercial vendors.
- Assess, and create a database of, the impact of identified interference threats on commercially available GNSS receivers

http://mycoordinates.org/gnss-threat-quantification-in-the-united-kingdom-in-2015/

Mark Greaves mark.greaves@<u>os.uk</u>

OS is Britain's mapping agency. To find out more about us, go to **os.uk**. If you'd like to talk to us, call +44 (0)3456 050505. For the hard of hearing, use Textphone +44 (0)2380 056146. Ordnance Survey © Crown copyright 2015

