

FAKULTA Aplikovaných věľ Západočeské Univerzity V plzni

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

On a Feasibility of Vertical Surface Movements Studies in the Light of ECGN: Capabilities of available Geodetic Tools

Jaroslav Šimek, Jan Kostelecký, Vratislav Filler and Vojtech Pálinkáš

Research Institute of Geodesy, Topography and Cartography Geodetic Observatory Pecný, CZ-250 66 Zdiby 98

Symposium of the IAG Subcommission for Europe - EUREF 2015, Leipzig, Germany, 03 - 05 June, 2015

Outline

VESTICE DO VAŠÍ BUDOUCNOST

FAKULTA Aplikovaných věd Západočeské Univerzity V plzni

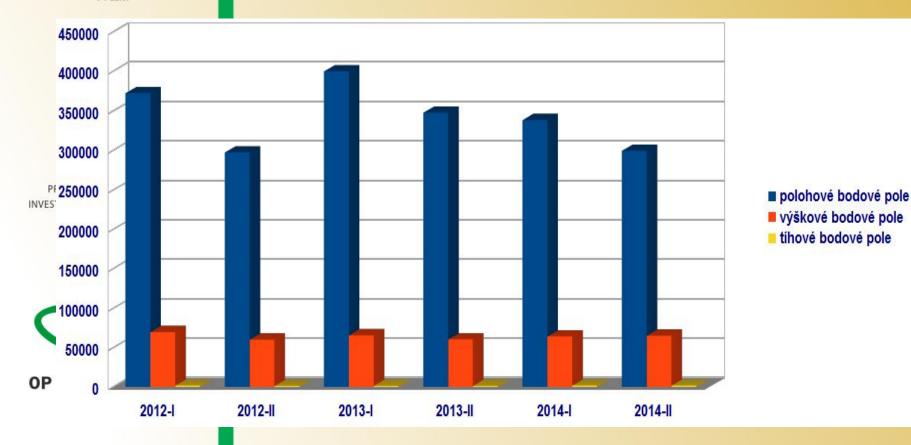
EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

OP Výzkum a vývoj pro inovace

1. Introduction

- 2. Geodetic tools a review
- 3. Repeated levellings
- 4. GNSS and heights
- 5. Gravimetry
- 6. Data used for comparisons
- 7. Results of comparisons
- 8. Conclusions

NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST


Introduction: reference frames in geodetic science

- Caporali: In the future we'll need gravity related coordinates, not just heights and timing, with an indication of the value of real gravity
- Indexto Inconsistencies between geometric and physical quantities must be removed

 ECGN: maintenance of the long term stability of TRS at the level of 10⁻⁹, esp. for the height component ...
 e.g. Inde et al., 2005, Poutanen et al., 2015

Introduction (2): Users' needs of reference frames

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

Data sources for surface kinematics studies in Central Europe

- Surface kinematics is a spatial problem, but usually treated separately for horizontal and vertical components
- For Central Europe we have the following:
- CERGOP, CERGOP 2 1993 1998, 2002
 2006; CEGRN Consortium since 2001 → Caporali et al., JoGD 2008, Tectonophysics 2009
- 2. EUREF/EPN (since 1995)
- 3. UELN95/98; EVRF2000, EVRF2007)
- 4. ECGN (2002 present day)
- 5. UNIGRACE (1997 2001)

V PLZN

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

VESTICE DO

FAKULTA APLIKOVANÝCH VĚĽ ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

VAŠÍ BU

2. Available Geodetic Tools – a Review

- Repeated levelling (1960s 1990s)
- GNSS based height components (time series)
- Absolute gravimetry (1990s now)
- Terrestrial 3D geodesy
 - (1960s -1980s)
- Integrated approach (after 2000) EVRS (realizations EVRF2000 and EVRF2007), ECGN

3. Repeated Levellings –

Strengths and Weaknesses

- Accuracy 1 mm x km^{-1/2}; for 20 y interval between epochs velocities of height differences 0.07 mm x km^{-1/2}
- General availability
- Excellent precision and accuracy of national blocks
 - Long-standing
- Demanding methodology (observations, monumentations, equipment calibrations)
- Long realization time
- Poor homogenity of the networks consisting of national blocks
- Detection of systematic effects
- Demanding detection of disturbing effects (exogenous deformations)

APLIKOVANÝCH VĚ Západočeské Univerzity V plzni

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

pro inovace

VAŠÍ BUDOUCNOS

INVESTICE DO

APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

NVESTICE DO VAŠÍ BUDOUCNOSTI

4. GNSS and heights – Strengths and Weaknesses

- Daily repeatabilities N/E/U \rightarrow 2 mm/2 mm/6 mm, std of velocities is < 1 mm/y
- Accuracy of GNSS-based heights rms 7 mm
- Vertical velocity 1.0 mm/y is significantly detectable after 3 years GNSS observation period
 - General availability
 - Continuously operating networks
 - Variations of position in space
- Vertical component less accurate than horizontal positions
- Many error sources affecting the height: correlation between parameters and satellite distribution, tropospheric refraction, reference frame, geocenter, orbit errors, site displacements due to ocean and atmospheric loading and due to exogenous deformations, antenna PCV, multipath)
- Sophisticated processing strategies needed to overcome or mitigate the impact of biases

5. Gravimetry

Strengths and Weaknesses

- Long-term reproducibility of FG5 < 1.6 µGal
- Standard uncertainty 2.5 µGal
- Std of offsets obout 1.0 µGal; offset range up to 10 µGal
- Absolute gravimetry is methodologically quite independent (purely physical quantity)
- Independent of any reference frame
- No network effect (error propagation) in the processing
- Liable to environmental effects associated with the near-surface mass re-distribution (especially with hydrology)
- It is difficult to separate disturbing effects from the signal
- Instrumental effects (e.g. offset) enter directly to the measured quantity
- Instruments and observations are very expensive and demanding

APLIKOVANÝCH VĚD Západočeské Univerzity V Plzni

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

pro inovace

NVESTICE DO VAŠÍ BI

6. Data used for comparisons

Repeated levellings

 Data collected in the ICRCM/RIGTC by P. Vyskočil (1934 – 2006)

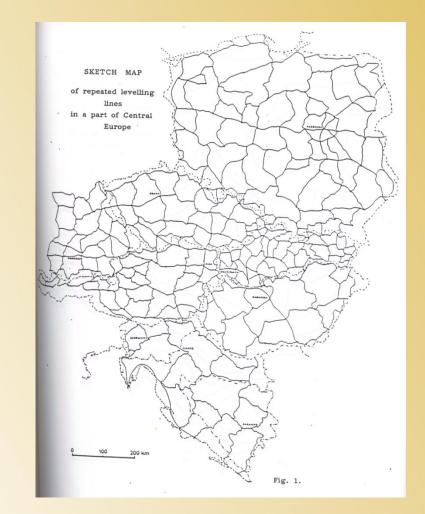
- Data coming from KAPG and GNSS collaboration of East European countries (1960s – 1980s)
- Data from Austria and Bavaria provided by the BEV Wien and LVA München in early 1990s

GNSS

- Class A EPN station positions and velocities, ETRF2000, epoch 2005.0, cummulative solution of GPS (A. Kenyeres, FÖMI)
- CZEPOS time series 2007 2013

Absolute gravimetry

 Absolute measurements by FG5 No 215 at 29 stations in the Czech Republic, Slovakia and Hungary in the period 2001 – 2011 (J. Kostelecký, V. Pálinkáš, RIGTC/GOP), repeated absolute measurements at the Pecný station



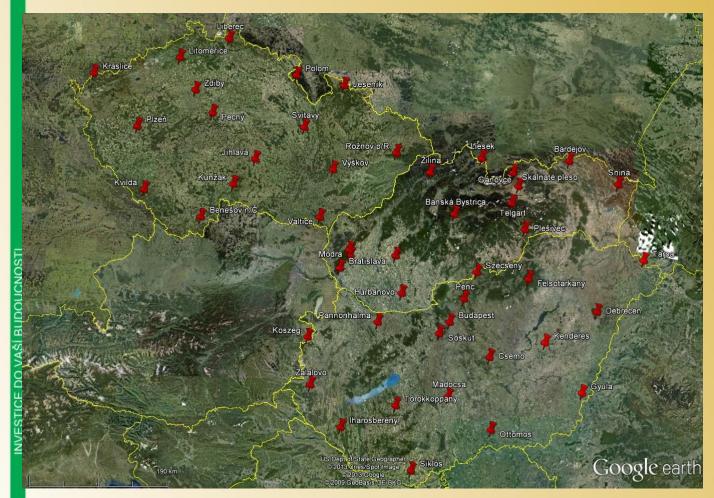
V PLZN

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Levelling lines of repeated levellings in Central Europe, P. Vyskočil, ICRCM 1994

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI



BUDOUCN

VACI

NVESTICE DO

Distribution of sites with repeated absolute gravity measurements by FG5 No 215, RIGTC/GOP

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

A list of absolute gravity stations in CZ, SK, HU with repeated measurements by FG5 No 215

Table 1 List of repeated absolute gravity measurements before and after 2001 ($g_{(old)}$ and $g_{(FG5\#215)}$) at the date shown in third and fifth columns of the table with corresponding gravity differences $\Delta g = g_{(FG5\#215)} - g_{(old)}$

Date FG5#215 δg_{hydro} (µGal) Station State Date Instrument $\Delta g (\mu Gal)$ $\Delta g_h(\mu Gal)$ Benešov n. Č. CZ 19.10.1995 JILAg-6 30.7.2002 -6.4-0.3-6.1Jeseník CZ 23.11.1999 JILAg-6 22.6.2004 -7.2-0.3-6.9Jihlava CZ 25.11.1999 JILAg-6 17.6.2004 -21.0-0.3-20.7Kraslice CZ 17.11.1995 FG5#101 15.6.2004 -8.30.0 -8.3Kvilda CZ 18,10,2001 JILAg-6 14.7.2005 1.4 0.1 1.3 Litoměřice CZ 17.10.1995 JILAg-6 16.7.2002 -8.00.0 -8.0Pecný CZ 11.2.1992 JILAg-6 28.10.2005* 2.5 -1.84.3 CZ FG5#101 28.10.2005* -1.9-1.1Pecný 21.2.1995 -3.0CZ FG5#107 Pecný 12.9.1993 28.10.2005* -1.41.6 -3.0CZ 20.11.2000 FG5#206 28.10.2005* 1.3 0.2 1.1 Pecný Pecný CZ 6.12.1998 JILAg-5 28.10.2005* -0.6-0.3-0.3CZ 16.10.2001 JILAg-6 12.7.2005 -20.00.1 -20.1Plzeň Polom CZ 8.9.1993 FG5#107 21.9.2008* -3.11.6 -4.7 CZ 8.11.1998 JILAg-6 24.6.2004 -15.90.0 -15.9Svitavy CZ Valtice 22.10.1995 JILAg-6 8.4.2003 -3.4 2.6 -6.0SK 27.6.1996 FG5#107 -7.4-0.8Banská Bystrica 28.9.2005 -6.622.9.1994 FG5#107 0.2 Bardejov SK 9.10.2003 -13.0-13.2SK 29.6.1996 FG5#107 9.10.2003 -12.0-0.6-11.4Bardejov Bratislava SK 3.9.1993 FG5#107 27.9.2005 -18.40.1 -18 5 Gánovce SK 8.3.1993 JILAg-6 20.8.2007* -14.0-3.2 -10.9FG5#107 -0.2Hurbanovo SK 29.9.1994 18.9.2004 -137 -13.5SK 23.6.1996 FG5#107 18.5.2008* -5.6 -0.6-5.0Liesek SK 10.3.1993 -3.2 -3.7Modra JILAg-6 22.12.2007* -6.9 SK 7.6.2000 JILAg-6 22.12.2007* -12.9-1.2-11.7Modra SK 15.8.2000 FG5#101 22.12.2007* 4.0 0.3 3.7 Modra Plešivec SK 19.6.1996 FG5#107 30.9.2005 -10.6-1.0-9.6Žilina SK 4.3.1993 JILAg-6 7.10.2005* -21.4 -3.2-18.2HU 28.5.1996 FG5#107 1.2 0.1 Budapest 24 5 2007 1.1 HU 11.8.2000 FG5#101 24.5.2007 3.7 1.9 1.8 Budapest HU 23.11.2001 10.10.2008 -9.4 -8.3Debrecen JILAg-6 -1.1HU 6.10.1994 FG5#107 3.6.2010 -4.6 1.5 -6.1Iharosberény Kőszeg HU 4.5.1993 JILAg-6 7.10.2008 -18.2-3.2-15.0HU 26.11.2000 FG5#206 26.5.2007 -9.6 0.4 -10.0Penc Siklós HU 12.12.1991 JILAg-6 22.5.2007 -7.90.1 -8.0Siklós HU 6.4.1995 JILAg-6 22.5.2007 -6.6-1.1-5.5Sóskút HU 20.11.2001 JILAg-6 4.6.2010 -6.70.3 -7.0FG5#107 Szecsény HU 23.7.1993 25.5.2007 -4.91.7 -6.6 25.5.2007 Szecsény HU 3.6.1996 FG5#107 1.1 0.3 0.8 Zalalövő HU 10.12.1997 JILAg-6 8.10.2008 0.8 -1.72.5

 δg_{hydro} represents differences between continental hydrological effects related to two epochs of measurements—corrected gravity differences are $\Delta g_h = \Delta g - \delta g_{hydro}$. Gravity differences exceeding the margin of error at 95 % confidence (see Sect. 5) are highlighted in bold and so are δg_{hydro} higher than 3 µGal (it indicates that the gravity difference is computed from measurements carried out in epochs of hydrological maxima-minima). "*" means that an average gravity value computed from repeated measurements of the FG5#215 (see Fig. 3) has been used—followed by the average date of measurements

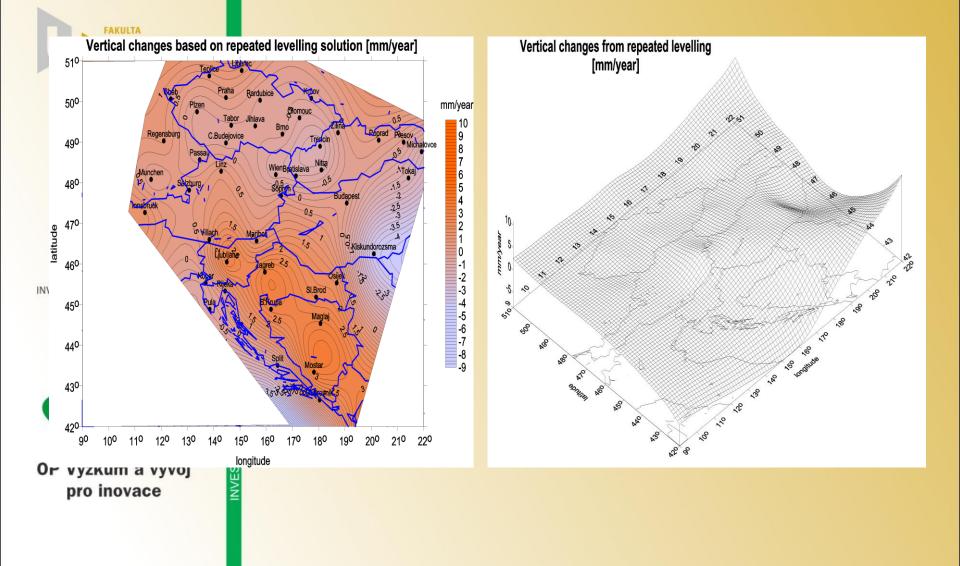
FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

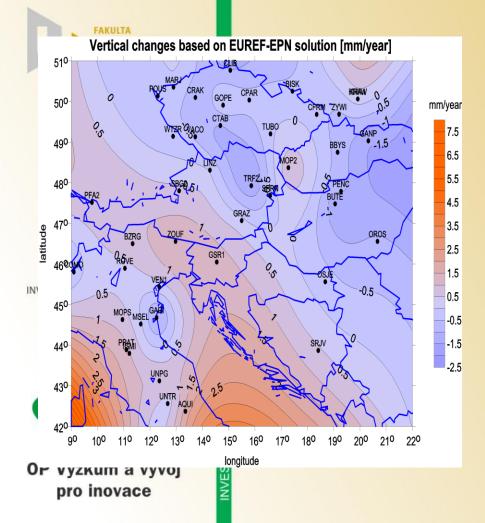
INVESTICE DO VAŠÍ BUDOUCNOS

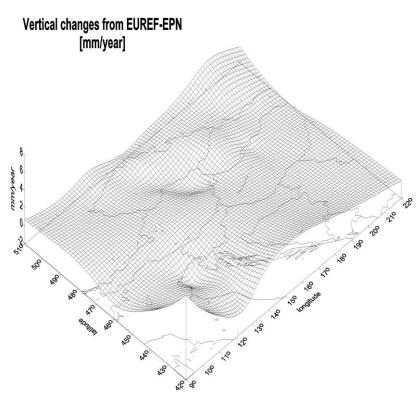
Map of vertical surface movements (mm/y) ICRCM 1994 (P. Vyskočil)

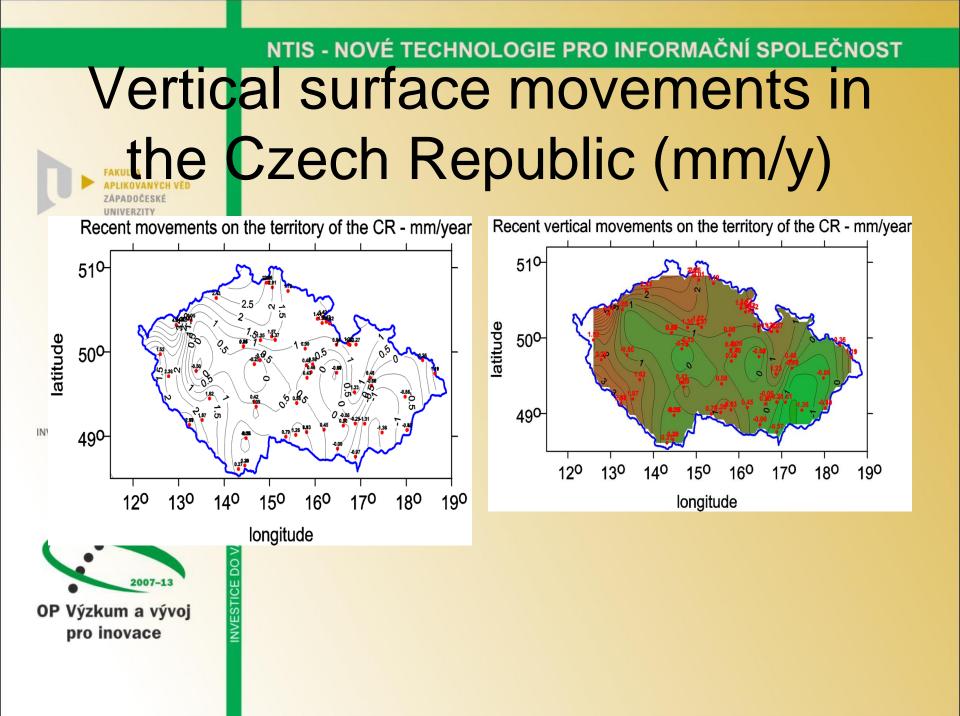
FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

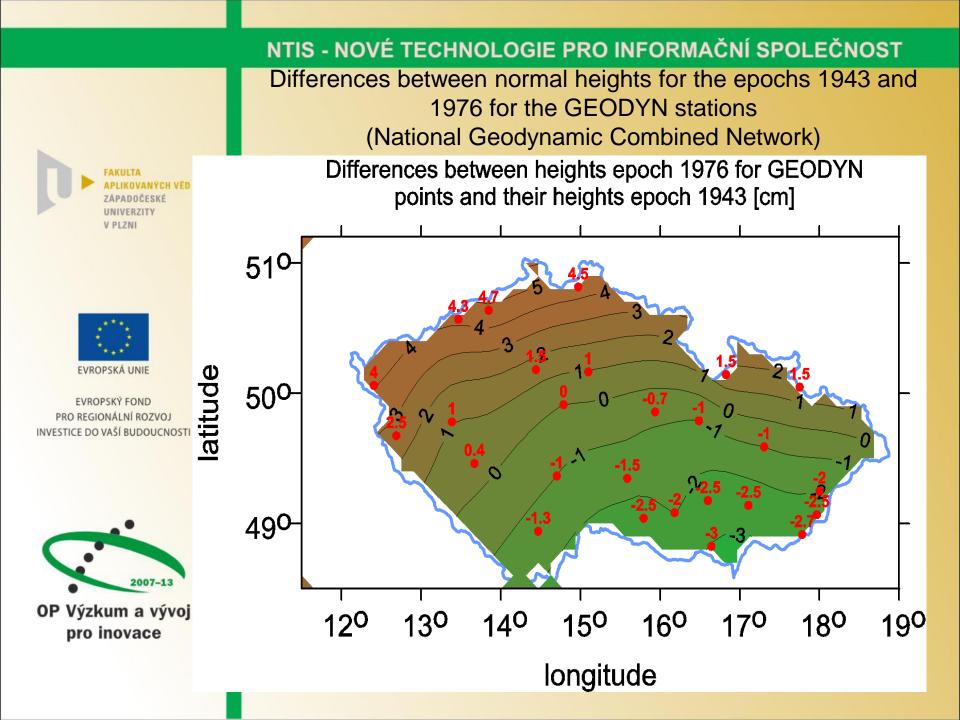


EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

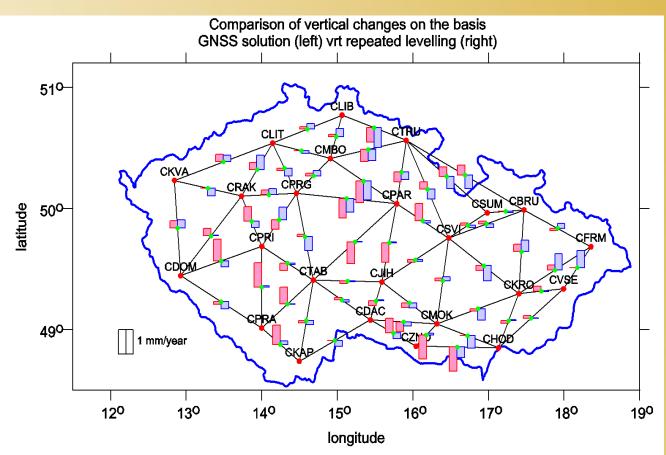



VVESTICE DO VAŠÍ BUDOUCNOS

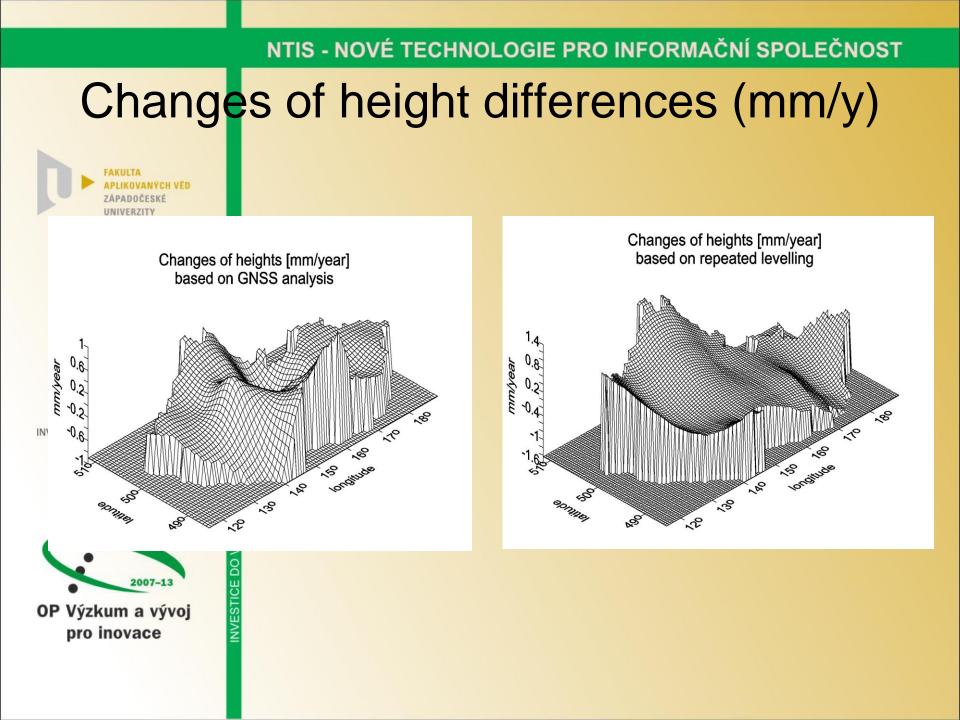

NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST Vertical changes from repeated levelling



Vertical changes from EPN



Vertical changes (tilts) of the baselines from GNSS and levelling


FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

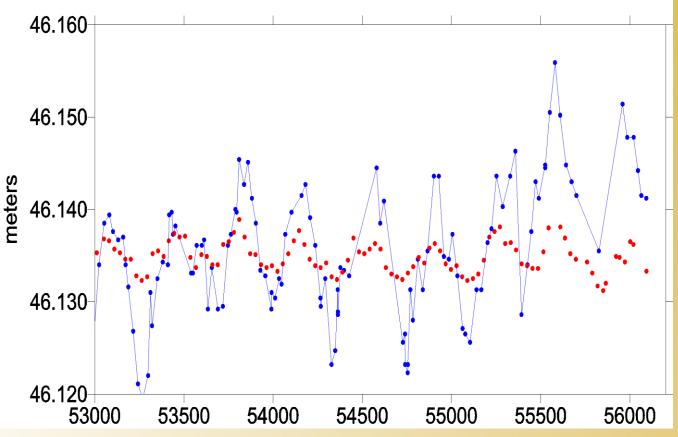
EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

NVESTICE DO VAŠÍ BUDOUCNOS

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

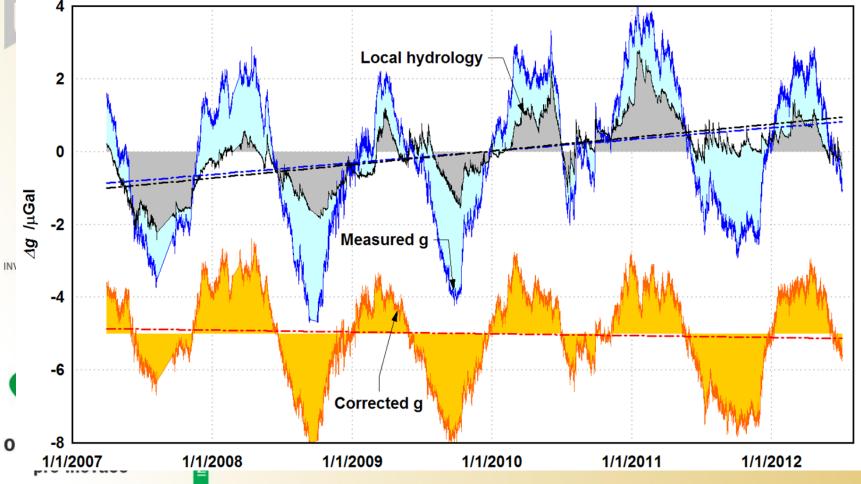
EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

DOUCNOST


NVESTICE DO VAŠÍ

NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST

Changes of the gravity field (1): Time variations of the geoid heights at GOPE due to hydrology from GRACE (red) and repeated absolute gravimetry (blue)


> Time variations of geoid at GOPE station red - GRACE monthly solution blue - absolute gravimeter FG5

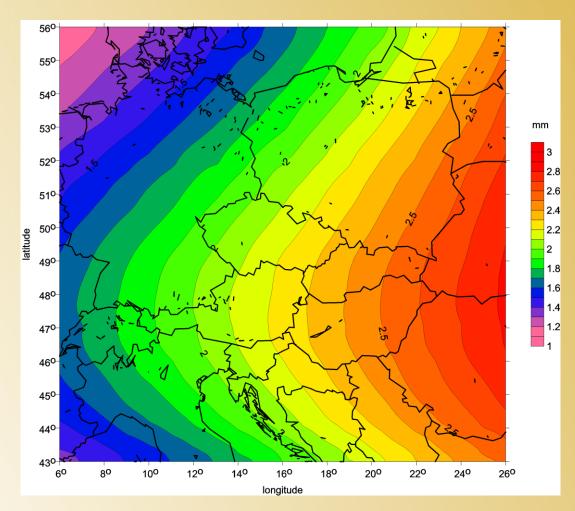
NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST Uncertainties of AG Measurements

							Table 2. Uncertainty of the applied corrections									
	FAKULTA APLIKOVANÝCH VĚD							arameters i	Type A s _i	Type B a _i	Units	Variance $u^2(x_i)$	Sensitivity coefficients c _i	Contribution to the variance $u_i^2(g)$	Contribution to the uncert. $u_i(g)$	
	ZÁPADOČESKÉ UNIVERZITY						Air pressure (admittance f			1.0E-11	m/s²/Pa	3.3E-23	1.80E+03	1.1E-16	1.0E-08	
	Annex D - Calculation of uncertainty						Air pressure (pressure se			2.0E+02	Pa	1.3E+04	3.00E-11	1.2E-17	3.5E-09	
	Table 1. Instrumental uncertainty of the FG5 No. 215 gravimeter						Earth tide cor	Earth tide correction		1.0E-08	m/s ²	3.3E-17	1.00E+00	3.3E-17	5.8E-09	
	Influence parameters <i>x</i> _i	Type A S _i	Type B <i>a</i> ;	Units	Variance $u^2(x_i)$	Sensitivity coefficients	Polar motion correction			5.0E-09	rad	8.3E-18	4.10E-02	1.4E-20	1.2E-10	
	,					с _і	Gradient corr	ection	2.0E-08		s ²	4.0E-16	8.00E-02	2.6E-18	1.6E-09	
E PRO I INVESTICI	Distance measurement (He-Ne laser)	1.5E-11		m	2.3E-22	5.00E+01	Fringe size correction		2.0E-09		m/s ²	4.0E-18	1.00E+00	4.0E-18	2.0E-09	
	Clock (rubidium oscillator)	4.0E-12		s	1.6E-23	1.00E+02	Diffraction co	Diffraction correction		1.2E-08	m/s ²	4.8E-17	1.00E+00	4.8E-17	6.9E-09	
	Beam verticality	3.0E-05		rad	9.0E-10	1.41E-04	Self attraction	correction	3.0E-09		m/s ²	9.0E-18	1.00E+00	9.0E-18	3.0E-09	
	Test mass rotation		1.5E-02	rad/s	7.5E-05	6.00E-07						Variance, <i>I</i>		2.2E-16	m²/s⁴ m/s²	
	Electronic phase shift		2.0E-08	s	1.3E-16	5.20E-01						Stand. Unc	ert., <i>u (g)</i>	1.5E-08	m/s	
	Residual air pressure		1.0E-04	Pa	3.3E-09	1.80E-05	Table 3. Co	Table 3. Combined uncertainty			of the gravity acceleration determined at the height of 1.3 m above ground					
	Magnetic field		5.0E-05	т	8.3E-10	7.00E-05		Va		u ² (g)		5.7E-16	m²/s ⁴			
	Temperature change		5.0E+00	°C	8.3E+00	7.00E-10			Standard uncertainty, u		u (g)	2.4E-08	m/s ²			
	Coriolis effect		2.0E-04	m/s	1.3E-08	3.00E-05			Confidence	e level, p		95	%			
	Determination of the Instrumental ref, height		2.0E-03	m	1.3E-06	3.00E-06				factor, k		2.0	m/s ²			
	Neglecting of non- constant gradient		4.0E-09	m/s²	5.3E-18	1.00E+00				panded uncertainty, $U\left(g ight)$ lative expanded uncert., U_{rel}		4.8E-08 4.9E-09	nvs			
	Floor recoil effect		1.0E-08	m/s ²	3.3E-17	1.00E+00	3.3E-17	5.8E-09								
	Choice of the scaled fringes	1.0E-08		m/s²	1.0E-16	1.00E+00	1.0E-16	1.0E-08								
OP V	Measurement long-term reproducibility	1.0E-08		m/s²	1.0E-16	1.00E+00	1.0E-16	1.0E-08								
р					Variance, <i>t</i>	u ² (g)	3.5E-16	m²/s ⁴								
					Stand. Unc	Stand. Uncert., <i>u (g)</i>		m/s ²								

Absolute gravity reduced for local hydrology

NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST Geoid changes from GRACE 2002 – 2014: Annual amplitudes over the entire period

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI


EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

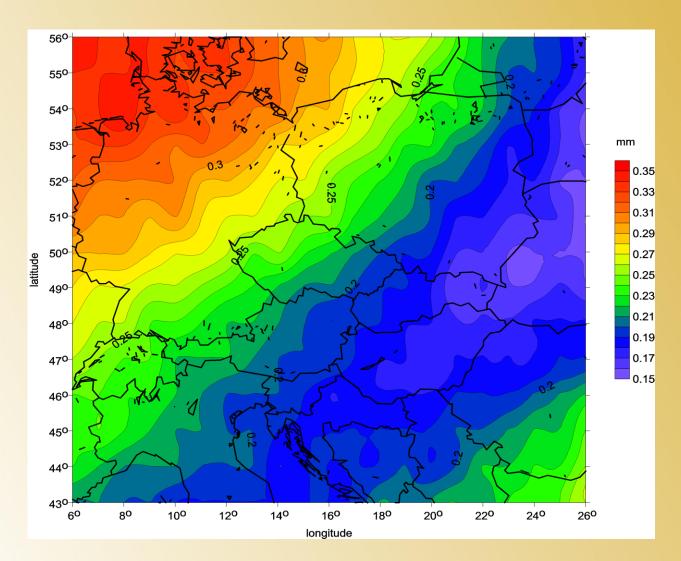
OP Výzkum a vývoj

pro inovace

2007-13

VVESTICE DO VAŠÍ BUDOUCN

NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST Geoid changes from GRACE 2002 – 2014: Semi annual amplitudes


FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

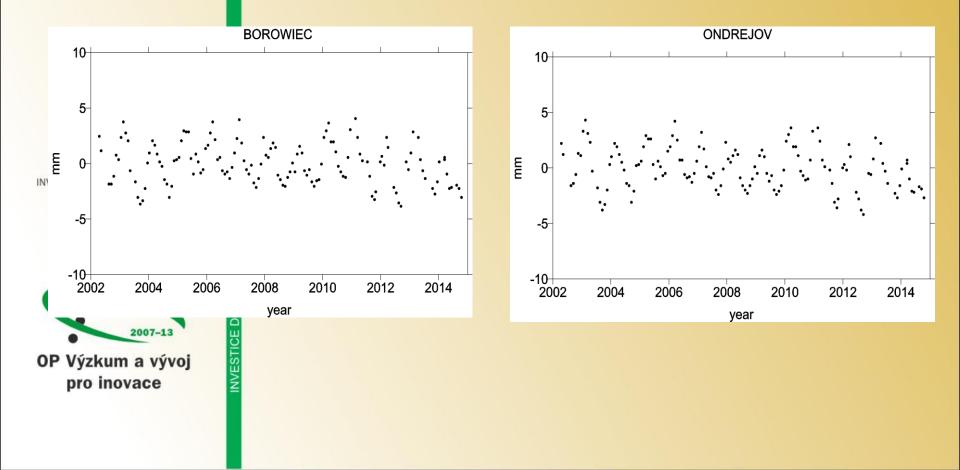
EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

NVESTICE DO VAŠÍ BUDOUCNOS

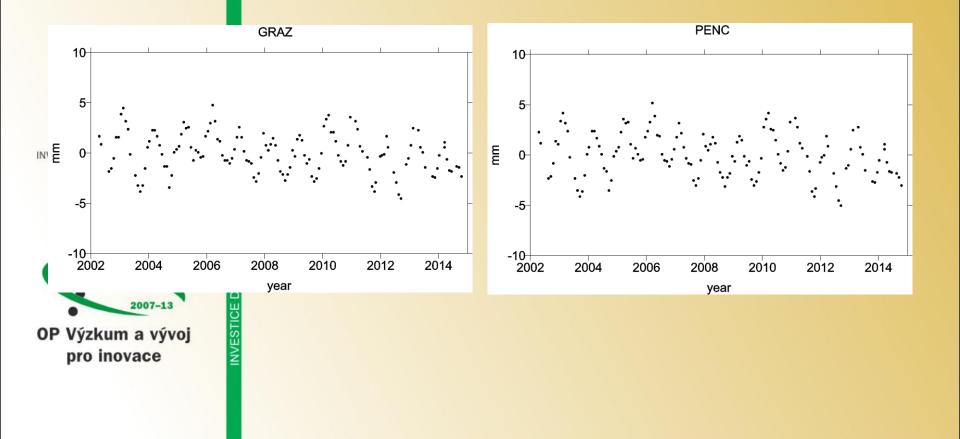
NTIS - NOVÉ TECHNOLOGIE PRO INFORMAČNÍ SPOLEČNOST Differences MAX – MIN changes over the entire period

56⁰⁻ 550 540 ġ. mm 530-11.5 520 11 51⁰ 10.5 10 50⁰ 9.5 latitude 9 49⁰ 8.5 8 48⁰⁻ 7.5 7 470-6.5 6 46⁰ 45⁰⁻ 77 440-430-80 120 10⁰ 14⁰ 18⁰ 220 16⁰ 200 24⁰ 60 26⁰ longitude

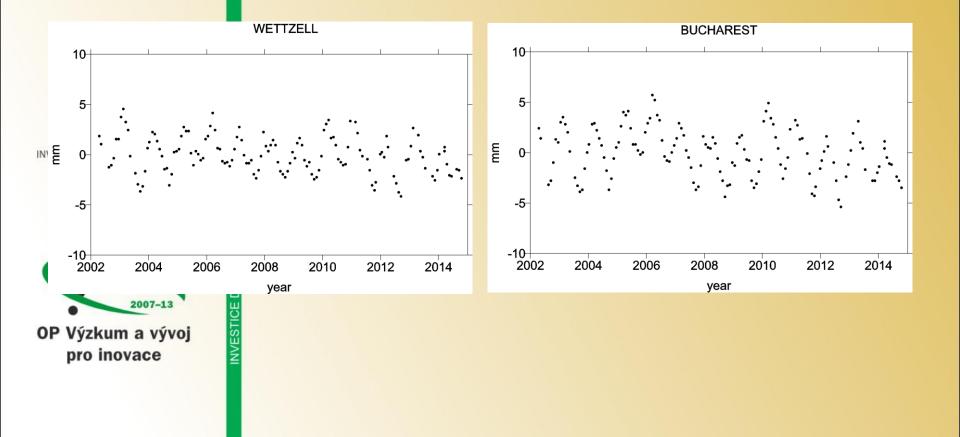
FAKULTA Aplikovaných věd Západočeské Univerzity V plzni



EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI



NVESTICE DO VAŠÍ BUDOUCNOS


Geoid changes for permanent GNSS stations

Geoid changes for permanent GNSS stations Princy APLINOVANYCH VED CARDIO CESKE CARD

Geoid changes for permanent GRUND GR

Comparison of vertical changes from EPN (red) vs repeated levellings (blue)

Comparison of vertical changes from EPN (red) vs. interpolated from levelling (blue) 510 **CLIB** MAR -BISK CRAK 50⁰⁻ GOPE ZYW CTAB TUBO WTZR VACO ≸ANF 490 BBYS MOP2 LĨŇZ TRF2 480 **SPENC** SPRA BUTE GRAZ 470 latitude OROS B<mark>ZR</mark>G G<mark>S</mark>R1 ROVE 4680 NVESTICE DO VAŠÍ BUDOUCNOSTI 45⁰ MOPS MSEL GA PRATI 440 SRJV 2 mm/year ₩^{PG} 43⁰⁻ UNTR ٩ AQUI 420 14⁰ 15⁰ 21⁰ 110 12⁰ 130 170 19⁰ 20⁰ 90 100 16⁰ 180 220 longitude

FAKULTA Aplikovaných věd Západočeské Univerzity V plzni

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Comparison of vertical changes from absolute gravimetry FG5 No 215 (red) and EPN (blue)

Comparison of vertical changes from absolute gravimetry (red) vs. interpolated from EPN (blue) 51⁰ tomerice Polom Kraslig Jesenik Zdibv 50⁰ Pecnv Kunzak Gánovce 490 Banska Bystrica Telgart Benesov_n.Pt. Valtice Plesivec Modra Bratislava 480 Hurbanovo Debrecen Koszeg 47⁰ Zalalovo latitude harosbereny 46⁰ Siklos 450 44⁰ 2 mm/year 🗸 43⁰ 42⁰ 90 110 12⁰ 14⁰ 15⁰ 20⁰ 22⁰ 10⁰ 130 16⁰ 170 180 190 21⁰ longitude

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

NVESTICE DO VAŠÍ BUDOUCNOST

Comparison of vertical changes from repeated absolute gravimetry (red) vs repeated levelling (blue)

Comparison of vertical changes from absolute gravimetry (red) vs. interpolated from levelling (blue) 510 nerice Polom Kraslice Jesenik Zdiby Pecny 500 Svitavy <u>Liesek</u> Kunzak Ganovce Banska Bystrica 490 Benesov_n.PI Valtic Plesivec Modra Bratislava Szecsen Hurbanovo 48⁰ Penc Debrecen apest Koszeg 47⁰ Zalalovo latitude harosbereny 46⁰ Siklos 45⁰ 440 2 mm/year v 43⁰ 420 90 100 110 12⁰ 130 140 15⁰ 16⁰ 180 190 20⁰ 21⁰ 22⁰ 170 longitude

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

NVESTICE DO VAŠÍ BUDOUCNOST

FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

AVESTICE DO VAŠÍ BUDOUCNOSTI

2.

3.

4.

Conclusions

- 1. Basic tendencies of vertical surface movements detected from repeated levellings and from GNSS observations coincide; absolute values differ within 2σ; results of repeated absolute gravity measurements do not generally coincide with levelling and GNSS, absolute values differ significantly; problem is probably in instrumental systematic effects and in hydrology
 - There is a little hope of extending repeated levellings over more countries in a coordinated way; BKG EVRS center can provide useful information resulting from EVRF development and maintenance
 - GNSS is the most promising tool for detection of surface movements – esp. with regard to the EPN development and increasing number of CORS networks; but numerous problems are to be solved
 - Gravimetry is a purely physical tool capable of detecting mass re-distributions in the Earth's body, but it is liable to environmental disturbing effects (mainly hydrology); instrumental effects play also an important role;

APLIKOVANÝCH VĚD ZÁPADOČESKÉ UNIVERZITY V PLZNI

EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

VESTICE DO

Thank you for your attention!

Acknowledgment: This work was supported by the European Regional Development Fund (ERDF), project "NTIS - New Technologies for Information Society", European Centre of Excellence, CZ.1.05/1.1.00/02.0090.