Realization of EVRS based on quasigeoid models and their validation using the GOCE-based gravity field models

R. Čunderlík

cunderli@svf.stuba.sk

Department of Mathematics and Descriptive Geometry

<u>Faculty of Civil Engineering</u> <u>Slovak University of Technology</u>

> <u>Bratislava</u> Slovakia

3 - 5 June 2015, Leipzig, Germany

-0.2

-0,4

-0,8

--1,2

Realization of Vertical Reference Systems

Global approach

 globally homogenous approach based on precise gravity field modelling

$$W_P = U_P(h^{GNSS}) + T_P$$

$$c_P = - (W_P - W_0)$$

satellite-only GGMs

(CHAMP, GRACE, GOCE)

- \Rightarrow fully independent from LVDs
- ⇒ low-frequency part obtained very precisely, however overall accuracy affected by the truncation error

(e.g. EVRF2007)

 $\Rightarrow c_{Pi} = W_{0i} - W_P = \int g dh$

 regional approach based on <u>spirit levelling</u> and potential of the height reference surface W_{0i}

$$\boldsymbol{c}_{P} = \boldsymbol{c}_{Pi} + \boldsymbol{W}_{0} - \boldsymbol{W}_{0i}$$

"Geometrical (geoidal) strategy"

"Potential (quasigeoidal) strategy"

Geopotential on the Earth's surface

value without its 3D position

 $c_{P} = -(W_{P} - W_{O})$

$$W_P = U_P(h_{GNSS}) + T_P$$

- to know precise 3D position of the Earth's surface
 - lands: 3D positioning by GNSS
 - oceans: altimetry

- determined on the Earth's surface
- independent from LVDs offsets

⇒ directly from precise GGMs (e.g. EGM-2008, EIGEN-6C4)

 \Rightarrow solving geodetic BVPs on the Earth's surface:

 <u>Molodensky problem</u> (globally inconsistent gravity anomalies)
 <u>fixed gravimetric BVP</u> (globally consistent gravity disturbances)

(Remark: Quasigeoid is not an equipotential surface, however ζ_P corresponds to T_P on the Earth's surface)

Objective of this study

Global approach

based on precise gravity field modelling

$$W_P = U_P(h^{GNSS}) + T_P$$

$$\boldsymbol{c}_{P}=-\left(\boldsymbol{W}_{P}-\boldsymbol{W}_{0}\right)$$

GOCE-based satellite-only GGMs

⇒ low-frequency part obtained very precisely:
 "accuracy of 1 to 2 cm and a spatial resolution of about 100 km" (GOCE goal)
 ⇒ affected significantly by stripping noise due to omission errors

<u>necessary to model the high-frequency part</u> (combined GGMs, national (quasi)geoid models)

Objectives

• to filter the geopotential:

 \Rightarrow on the DTU13_MSS model generated from the GOCE-based GGMs

 \Rightarrow on the geoid surface obtained from a transformation of quasigeoid models

local realization:

⇒ combination of GNSS 3D positioning and local quasigeoid models to determine physical heights within a levelling lines

Nonlinear diffusion filtering on a closed surface

Linear heat equation on a (closed) surface:

$$\frac{\partial u(X,t)}{\partial t} = \Delta_S u(X,t)$$
$$\frac{\partial u}{\partial t} = \nabla_S (\nabla_S u) \qquad \Delta_{\mathbf{s}} - \mathbf{s}$$

 Δ_s - the Laplace-Beltrami operator

EUREF-2015: Session 5

Stripping noise due to omission errors

			and internet of
a name of the second	Statistics	TOTAL	Pacific
	Mean [m ² s ⁻²]	0.019	-0.004
	STD [m ² s ⁻²]	2.687	1.201
		The second for the	

EUREF-2015: Session 5

EUREF-2015: Session 5

EUREF-2015: Session 5

EUREF-2015: Session 5

EUREF-2015: Session 5

Filtered satelite-only MDT and tide gauges

Satellite-only MDT

Relations between European national height reference systems and EVRF2007

(source: http://www.bkg.bund.de)

Validation of quasigeoid models by GOCE-DIR5

(European Gravimetric Quasigeoid)

3D position of the equipotential surface

transformation from quasigeoid to geoid

correction:

⇒ <u>EGG-2008</u>

$$\left| corr = N - \zeta = \frac{\Delta g_{BA}}{\bar{\gamma}} H \right|$$

... approximate relation !!!

 $(zero \ degree \ term: \ N_0 = -0,21 \ m)$

EUREF-2015: Session 5

EUREF-2015: Session 5

EUREF-2015: Session 5

EUREF-2015: Session 5

Filtered W from GOCE-DIR5 on geoid models

Filtered W from GOCE-DIR5 on geoid models

Local realization in central Slovakia

$$H_{P} = \frac{-(W_{P} - W_{0})}{\overline{\gamma}_{P}} = \frac{-[U_{P}(h^{GNSS}) + T_{P} - W_{0}]}{\overline{\gamma}_{P}}$$

along levelling lines

 (the 1st and 2nd order)
 close to the reference
 levelling benchmark
 "Pitelova"
 (reference point of EVRF2007)

Tested quasigeoid models

GNSS-Levelling test

EUREF-2015: Session 5

GNSS-Levelling test

EUREF-2015: Session 5

Conclusions

Realization of EVRS

- ⇒ based on <u>gravity field modelling</u> is till limited due to a demand for precise quasigeoid models with a real "cm-level" accuracy
- ⇒ low-frequency part obtained form the GRACE\GOCE-based satellite-only GGMs provides an essential basis
- \Rightarrow however it is practically inevitable to model high-frequency part:
 - combined GGMs (EGM2008, EIGEN6C4stat) still need improvements
 - precise national (quasi)geoid models based on reliable terrestrial gravimetric measurements are very welcome (<u>fixed gravimetric BVP</u>!!!)
- ⇒ our <u>validation of candidates for "the European (quasi)geoid</u>" using GOCE-DIR5 and nonlinear diffusion filtering shows:
 - some systematic tendencies up to several cm
 - in high mountains (e.g. Alpes) it can be problem of inaccurate corrections $(\zeta \Rightarrow N)$
 - reducing of stripping noise of the satellite-only MDT provides its better relationship to the 3D positions of the geoid models in coastal areas

