

Realizing a geodetic reference frame using GNSS in the presence of crustal deformations: The case of Greece

M. Gianniou National Cadastre and Mapping Agency S.A.

Outline

- 1. Introduction
- 2. Deformation field in Greece
 - Constant plate motions
 - Earthquakes etc.
- 3. **Deformations and HEPOS**
- 4. Discussion

EUREF 2015 Symposium, Leipzig

П

0

Geodetically derived velocities relative to Eurasia (Nyst and Thatcher, 2004)

Constant plate motions

Differential displacements of the HEPOS stations over a two-years period (w.r.t. station 041A, 11/2007 - 11/2009) (Gianniou, EUREF 2010)

EUREF 2015 Symposium, Leipzig

П

The Andravida 2008 EQ

- Day: June 8, 2008
- Magnitude (L): 6.5
- Depth: 25 Km

Deformations due to Earthquakes

The 2008 offshore South Peloponnese EQ

- Day: Feb. 14, 2008
- Magnitude (L): 6.2
- Depth: 41 Km

Deformations due to Earthquakes

The Cephalonia 2014 EQs (strongest events)

- Days: Jan 26 / Feb 3 2014
- Mw: 6.0 / 5.9
- Depths: 16 /11 Km

Deformations due to Earthquakes

The Cephalonia 2014 EQs:

Displacements at non-HEPOS stations for the period before Jan 26 and after Feb 3, 2014.

(Ganas et al., 2015 Acta Geodyn. Geomater, Vol 12)

Deformations due to Earthquakes

The Cephalonia Feb. 3, 2014 EQ Source: Kontoes et al, (2015), BEYOND, EGU 2015 Splinter Session

EUREF 2015 Symposium, Leipzig

Deformations due to Earthquakes

The North Aegean Sea 2014 EQ

- Day: May 24, 2014
- Mw: 6.9
- Depth: 28 Km

Deformations due to volcanic activity

The 2011-2012 Santorini volcano inflation (effect on HEPOS station)

Deformations due to volcanic activity

The 2011-2012 Santorini volcano inflation (overview)

Source: I. Papoutsis et al. 2013, GRL, Vol 40, 267-272

Source: http://geophysics.eas.gatech.edu/anewman/research/Santorini

Deformations due to volcanic activity

The 2011-2012 Santorini volcano inflation (Station Nomi)

Source: http://dionysos.survey.ntua.gr/

3. Approach currently followed in HEPOS

The two sub-networks considered in HEPOS

Based on the tectonic characteristics of the stations, two subnetworks* (with an overlap zone) have been formed.

(Gianniou et al., 2013)

* Crete has always been treated as a separate network.

4. Discussion Choosing a reference frame

- Provided that the velocity field is homogeneous, a reference frame can always be defined to ensure practically zero-velocities.
- This is not possible in the case of inhomogeneous velocity field.

IGS08 Velocities (Chatzinikos et al., EUREF 2013)

ETRF2000 Velocities

4. Discussion Semi-dynamic datum

In a semi-dynamic datum coordinates remain fixed at a reference epoch.

Coordinates computed at time of observations, are being 'transformed' (backdated) to the coordinates that would have been measured at the reference epoch.

4. Discussion Examples of deformation areas

US - California

4. Discussion

Examples of deformation areas

US - California

HTDP (Horizontal Time Dependent Positioning) software

- Estimates horizontal crustal velocities
- Estimates crustal displacements from one date to another
- Updates (or backdate) positional coordinates from one date to another
- Transforms positional coordinates from one reference frame to another and/or from one date to another
- Transforms certain types of geodetic observations from one reference frame to another and/or from one date to another
- Transforms crustal velocities from one reference frame to another

4. Discussion Examples of deformation areas

П

New Zealand

Introduction of NZDG2000

- ITRF96 based
- Reference epoch 2000.00
- Use of deformation model
 - Constant deformation
 - Localized patches for EQs

4. Discussion Examples of deformation areas

New Zealand

Implications-Limitations

- complexity, annoyance ¹
- coordinates of CORS change ¹
- the deformation model becomes more complex as patches accumulate ¹
- successful use of the deformation model requires thorough understanding of its principles ¹
- incorporation of the deformation model in market software, is complicated especially due to the numerous patches.

4. Discussion Coordinate changes and Network-RTK

П

Network-based techniques (VRS, MAC, FKP) facilitate daily surveying.

However, these techniques presume consistent station coordinates, which was not necessary for the classical Single-Base approach.

- The maintenance and realization of a reference frame in regions of active, complex deformations (constant term plus earthquakes) is particularly demanding.
- The approach currently used in HEPOS cope to a large extend with the problem of different velocities between the northern and southern part of the country, but cannot face localized deformation.
- Local deformations due to EQs, volcanic activity etc. should be considered, taking into account the national and international experience (US, New Zealand etc.).
- The 2014 EQs of Cephalonia and Samothrace can be used as pilot studies.

Acknowledgments

The HEPOS project is part of the Operational Program "Information Society" and is co-funded by the European Regional Development Fund.

