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Overview

• 1915-2015: one century of General Relativity, a 
geometric approach to Gravity

• Several ideas behind gravity as geometric curvature are 
in common with the theory of cartography and leveling

• Motion in a curved spacetime affects massive and 
massless particles

• As Reference Frames become more globally defined, 
we must start considering how gravity affects 4D 
coordinates at the scale of the curvature of the 
terrestrial gravity field (Gm/c2r 0.7 ppb)



1915-2015: one century of General 
Relativity (= geometric theory of gravity)

• Einstein, A. (1915): Zur allgemeinen
Relativitaetstheorie. Preuss. Akad. Wiss. Berlin Sitzber., 
pp. 778-786 

• Einstein, A. (1915): Zur allgemeinen
Relativitaetstheorie (Nachtrag).  Preuss. Akad. Wiss. 
Berlin Sitzber., pp. 799-801

• Einstein, A. (1915): Erklaerung des Perihelbewegung
des Merkur aus der allgemeinen Relativitaetstheorie. 
Preuss. Akad. Wiss. Berlin Sitzber., pp. 831-839

• Einstein, A. (1915): Die Feldgleichungen der
Gravitation. Preuss. Akad. Wiss. Berlin Sitzber., pp. 844-
847  



Why is General Relativity so important
to Geodesy (..and viceversa)?

‘… One day in the year 1666 Newton had gone to the country and seeing the 
fall of an apple, as his niece told me, let himself be let in a deep meditation
on the cause which thus draws every object along a line whose extension
would pass almost through the center of the Earth..’

Voltaire, F.M. (1738), Elements de Philosophie de Newton, Pt.3, chapter III

Apple as a first example of curved space, 
which locally looks flat:
Two curves A and B initially starting from 

P at a divergent angle, eventually cross 
and continue in different directions
Locally, the behavior the geometry of the 
two curves on the curved surface of the 
apple looks exactly as in Euclidean ‘flat’ 
(i.e. not curved) space.



Geodesic as a line of minimum length
EuclidesRiemann Newton, Einstein

Geodesic as parallel transport in a manifold:

• in a flat manifold the ordinary derivative of
the tangent vector is zero -> trajectory is a
straight line. ‘t’ is an affine parameter along
the trajectory

• In a curved manifold the minimum length
trajectory (great circle) bends. The covariant
derivative of the tangent vector is zero.
Curvature is defined by the gravitational and
centrifugal potential. ‘t’ is an affine
parameter along the trajectory

• Dynamics: the Newton Equation of motion
and that of a geodesic in curved space time
coincide, to a first approximation. The
covariant derivative of the tangent vector (=
velocity) is zero. Curvature is defined by the
gravitational potential. ‘t’ is an affine
parameter along the trajectory and
coincides with proper time
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Christoffel symbols
express the force in terms
of geometric curvature



How spatial curvature can be
measured by parallel transport of a 

vector along a loop

In curved space the rotation angle resulting from
parallel translation of a vector along a close circuit is
inversely proportional to the square radius of
curvature of the manifold.

vector at the starting
point

vector at the end 
point

In flat space the initial and final
direction of the vector
transported by parallelism
along a loop coincide

In a curved spacetime with a rotating
central body the rotation of a vector
parallely transported along a geodesic will
be the sum of the geodetic precession and
an additional rotation due to ‘Frame
Dragging’
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The trajectories of light rays (= massless photon) follow
bending geodesics



Coordinate frames can be defined only
locally: 2D horizontal, 1D vertical, time

For GNSS: at each point of the orbit (=accelerated frame) the 
frequency of the on board clock must be corrected depending
on local gravity. Two events A nd B are synchronous with time 
scale T  but happen at a different time when measured with 
the time scale T’, with an acceleration tacking place between T 
and T’

The two grids are not equivalent because tangent at 
different points (central meridians) of a curved manifold

U0=const

W0=const

In leveling, the curvature of the equipotential forces tangent
planes at different places to be not parallel



Conclusion
Coordinate lines are not rectilinear due to the 
curvature of spacetime; the unit interval stretches
from point to point as a function of gravity

Comparing a coordinate frame with origin at the 
surface of the earth with a coordinate frame at 
infinity implies a scale factor of the order of 0.1 
ppb, and rotations of a fraction of milliarcsec., due 
to the curvature of the intervening spacetime

Likewise comparing clocks in regions of different
gravity implies gravity dependent corrections

When the rotation of the Central Body is taken
into account, curvature of space and time are 
coupled to each other (Lense Thirring effect).

Prediction:
In the future, we will need ’gravity related
coordinates’ (and not just heights and timing) , 
with an indication of the value of the local gravity


