

GOALS AND ACTIVITIES OF THE EUREF TECHNICAL WORKING GROUP

EUREF 2015 Symposium Leipzig, Germany June 3-5, 2015

C. Bruyninx for the EUREF TWG

MEMBER LIST

- **▼** Zuheir Altamimi, France
- ⋆ Elmar Brockmann, Switzerland
- Carine Bruyninx, Belgium (TWG chair)
- Alessandro Caporali, Italy, (EUREF secretary)
- * Rolf Dach, Switzerland
- ⋆ Jan Dousa, Czech Republic
- × Rui Fernandes, Portugal
- ★ Heinz Habrich, Germany

- Johannes Ihde, Germany (EUREF chair)
- Ambrus Kenyeres, Hungary
- Martin Lidberg, Sweden
- **★** Rosa Pacione, Italy
- * Markku Poutanen, Finland
- ★ Wolfgang Söhne, Germany
- ★ Karolina Szafranek, Poland
- ★ Günter Stangl, Austria

***** **** ROB

EUREF GOALS

Define, realise, maintain, provide access and promote the adoption of

* EVRS

European Vertical Reference System

× ETRS89

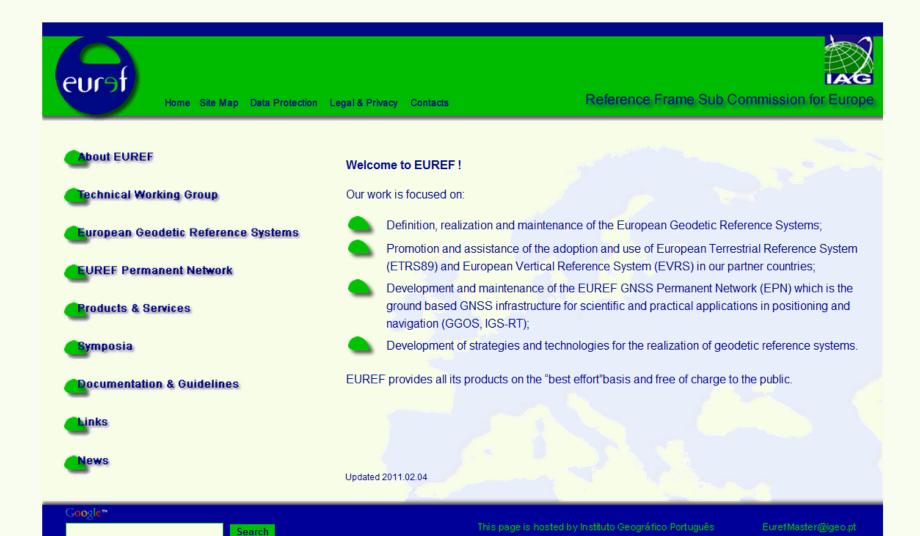
European Terrestrial Reference System

KEY INFRASTRUCTURES

United European Levelling Network+ EVRS

★ EUREF Permanent GNSS Network + ETRS89

EUREF TECHNICAL WORKING GROUP


- ★ Technical Working Group = EUREF steering committee
- ★ The EUREF TWG was created at the EUREF symposium in Berne, 1992
- ★ Meets three times a year to manage EUREF activities
- ★ Minutes of the meetings : http://www.euref.eu/
- ★ Members in charge of special tasks, members elected by the plenary (4 year term, renewable once), ex-officio members,

EUREF WEB SITE

http://www.euref.eu/

EUREF PRODUCT CATALOGUE

Updated, new version available from EUREF web site:

http://www.euref.eu/documentation/EUREF_Products-20141014.pdf

- Validated/Official Products
- Observational & Meta Data
- 3. Internal and Other Products / Monitoring
- 4. EUREF Standardization / Guidelines

EUREF WG

- * Multi-GNSS WG, E. Brockmann
- * Reprocessing WG, C. Völksen
- **×** EPN Densification WG, A. Kenyeres
- **★** Deformation models WG, M. Lidberg

<u> MULTI-GNSS WORKING GROUP</u>

Talk by E. Brockmann, S. Lutz "Multi-GNSS activities at EPN and at swisstopo" Session 3

EUREF WG

- * Multi-GNSS WG, E. Brockmann
- * Reprocessing WG, C. Völksen
- **×** EPN Densification WG, A. Kenyeres
- **★** Deformation models WG, M. Lidberg

REPROCESSING WORKING GROUP

Regular reprocessing of historical EPN data

- ★ EPN-Repro1: 01/1996-01/2007, results released in 2012
 - + participation of almost all EPN analysis centers
- **EPN-Repro2**: 01/1996-12/2013, results expected in 2015
 - + just a few analysis centers, with focus on usage of different software (Bernese, GIPSY, GAMIT).
 - + data analysis almost finished
 - + first combination tests performed (coordinates and troposphere)

Talk by C. Völksen et al, EPN Repro 2: Activities in the EPN Working Group on Reprocessing, Session 2

**** **** ROB

EUREF WG

- * Multi-GNSS WG, E. Brockmann
- * Reprocessing WG, C. Völksen
- **×** EPN Densification WG, A. Kenyeres
- **★** Deformation models WG, M. Lidberg

NEW Working Group Created June 1st 2015

DENSIFICATION OF THE EPN

Goal: high quality positions and velocities in an homogeneous reference frame, for a very dense network of GNSS stations

- Combine weekly position solutions (SINEX) from national dense GNSS networks with EPN
 - Mapping Agencies and other agencies are invited to participate!
- Collect station site logs for contributing stations, develop web site

Talk by A. Kenyeres et al "Overview of the recent advancements of the EPN Densification", session 2

EUREF WG

- * Multi-GNSS WG, E. Brockmann
- * Reprocessing WG, C. Völksen
- **×** EPN Densification WG, A. Kenyeres
- ➤ Deformation models WG, M. Lidberg

WG ON DEFORMATION MODELS

Motivation:

- improving the knowledge of surface deformations in Eurasia and adjacent areas
- velocity model(s) will potentially be a valuable tool in the management and use of the national realisations of the ETRS89.

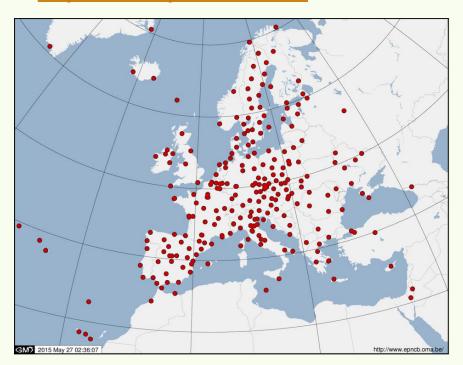
The results from the "EPN Densification" are an important input for the activities.

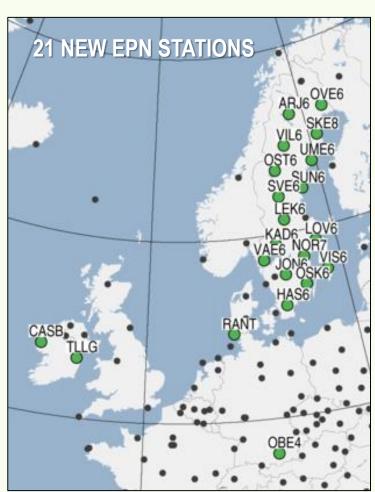
We now **ask for cooperation** with those of you who work on models of crustal deformations in specific areas and regions, or already use deformation models in your current activities.

Contact: Martin Lidberg (<u>martin.Lidberg@lm.se</u>)

EPN COORDINATORS

- **★** Network Coordinator, C. Bruyninx
- ➤ Data flow Coordinator, G. Stangl




EUREF PERMANENT GNSS NETWORK

★ 266 GNSS reference stations with freely available observations, metadata, and known ETRS89 coordinates

★ Central Bureau at ROB, Belgium

http://www.epncb.oma.be/

MULTI-GNSS TRACKING

Station site log:

```
3.x Receiver Type
                              : (A20, from rcvr ant.tab; see instructions)
     Satellite System
                              : (GPS+GLO+GAL+BDS+QZSS+SBAS)
     Serial Number
                              : (A20, but note the first A5 is used in SINEX)
    Firmware Version
                              : (A11)
    Elevation Cutoff Setting: (deg)
    Date Installed
                              : (CCYY-MM-DDThh:mmZ)
    Date Removed
                              : (CCYY-MM-DDThh:mmZ)
                              : (none of (deg C) +/- (deg C))
    Temperature Stabiliz.
    Additional Information
                              : (multiple lines)
```

Should indicate presence of satellite system in RINEX 2 (or RINEX 3) obs. files

	GPS	GLO	GAL	BDS	QZSS	SBAS
In site log (Rx2/3)	266 (266)	218 (217)	79 (<mark>60</mark>)	33 (29)	6 (3)	68 (39)
Not in site log, but in Rx2/3	0	0	2	6	4	0

+ RINEX 3 format to be used for multi-GNSS is RINEX v3.02

(future: use last RINEX 3.0x format)

- * Rx 3 data will move operations. E

 * Rx 3 data will never to ra centers characters cha \leq S, BDS) \rightarrow Rx 3
 - a centers should be

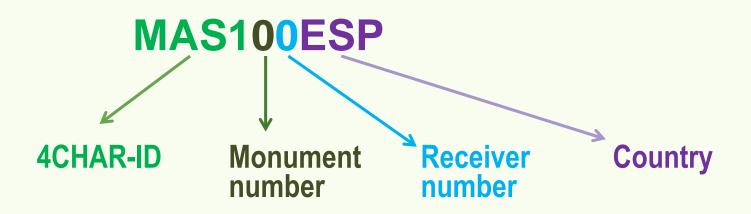
mas12350.14d.Z

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz

ng names

- ✓ DC prepare to
 - Receive Rx 3 files with long names
- Stations Nobody will be forced to stop with Rx2

 V Submit Full EPN will continue to be available for some time in Rx2


 For some time in Rx2 17, long name strongly preferred
 - - ✓ Have Rx3 files with long names in same directory as Rx 2 files.
 - ✓ Have adapted data download procedures

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz

New long station name

Min. 3 years backward compatibility between new long station names and old ones

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz

Data source

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz

Start time

RINEX 3 TRANSITION PLAN

New Rx3 long station names are defined for all EPN stations by EPN CB

			DQ (%)		Availability					Latency					
Long Station Name	City	Country	0°	15°	(9	•	(9	urly %)	RT (%)	Last Data Available	(ourly %)	RT (s)		
	_	_	_	_	BKG	OLG	BKG	OLG	_	_	BKG	OLG	_	G	_
_	<u> </u>	Δ.								A					Ľ
ACOROOESP	A Coruna	Spain	84	99	100	100	100	100	100	2015-05-2	7 99	99	0.8	~	
AJACOOFRA	Ajaccio	France	93	100	100	100	100	100	100	2015-05-2	7 96	86	1.0	~	
ALACOOESP	Alicante	Spain	97	100	96	100	99	99	94	2015-05-2	7 76	76	0.8	~	
ALBA00ESP	Albacete	Spain	97	100	100	100	100	100	100	2015-05-2	7 87	87	0.7	~	
ALME00ESP	Almeria	Spain	85	97	100	100	100	100	100	2015-05-2	7 97	96	1.9	~	_
ANKROOTUR	Ankara	Turkey	88	96	100	100	96	96	_	2015-05-2	7 95	5 0	_	~	
AQUIOOITA	L'Aquila	Italy	84	100	100	100	100	99	_	2015-05-2	7 97	96	_	~	_
ARGIOOFRO	Argir, Tórshavn	Faroe Islands	90	100	100	100	100	100	_	2015-05-2	7 100	99	_	~	
ARJ600SWE	Arjeplog	Sweden	94	100	100	100	100	99	_	2015-05-2	7 97	95	_	~	
AUT100GRC	Thessaloniki	Greece	87	100	100	100	100	99	100	2015-05-2	7 99	99	0.9	~	_
AUTNOOFRA	Autun	France	92	100	100	100	100	100	_	2015-05-2	7 22	2 0	_	~	•
AXPV00FRA	Aix En Provence	France	78	86	100	100	100	100	_	2015-05-2	7 82	16	_	~	

th long names

- ✓ DC prepare to
 - ✓ Receive Rx 3 files with
 - ✓ Check corrow
- Stepwise procedure will be set up together will involved DC, station operators and users!
- Process will slowly start after this symposium. e strongly preferred
- √ Users p
 - ✓ Have Rx3 files with long names in same directory as Rx 2 files.
 - Have adapted data download procedures

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz
File Period

MAS100ESP_R_20142350000_01D_30S_MO.crx.gz

Data Sampling

30S 05H 05M
Daily 5 Hz 5 minute

ftp://igs.org/pub/data/format/rinex302.pdf

EPN COORDINATORS

- **★** Network Coordinator, C. Bruyninx
- **★** Data flow Coordinator, G. Stangle
- ★ Real-time Analysis Coordinator, W. Söhne

REAL-TIME STREAMS

- ★ Three regional broadcasters
 - + ASI: euref-ip.asi.it
 - + BKG: www.euref-ip.net
 - + ROB: www.euref-ip.be
- ★ Goal: user access should be equally distributed
- ➤ Prerequisite: user should be able to switch between RBs w/o loss of performance (availability, latency, ...)
- Needs identical setup of each broadcaster
 - + All mountpoints available at all RBs
 - + Identical mountpoint names
 - + Identical format descriptions

EUREF BROADCASTER GUIDELINES

- ★ Release of EUREF broadcaster guidelines (April 14, 2015)
 - + Valid for all EUREF-related broadcasters (regional, national, local)
- **x** Talk by W. Söhne, EPN Real-Time Analysis Coordinator Status Report, Session 3

EPN COORDINATORS

- * Network Coordinator, C. Bruyninx
- **★** Data flow Coordinator, G. Stangle
- * Real-time Analysis Coordinator, W. Söhne
- ★ Analysis Coordinator, K. Szafranek

ANALYSIS COORDINATION

* Routine EPN Products

Bernese 5.2

+ Final products: daily and weekly position solutions based on 16 individual AC solutions

15 - Bernese 5.2, 1 - Bernese 5.0,1 - GIPSY-OASIS II 14 GPS+GLONASS solutions, 2 GPS solutions

- + Rapid products: daily position solutions based on 9 individual AC solutions
- + Ultra-rapid products: hourly position solutions based on 3 individual AC solutions

http://www.epnacc.wat.edu.pl

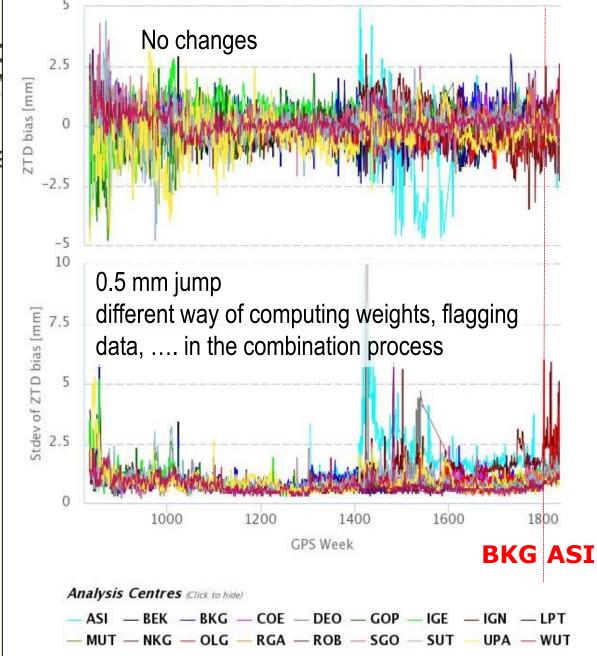
ANALYSIS COORDINATION

Special Products

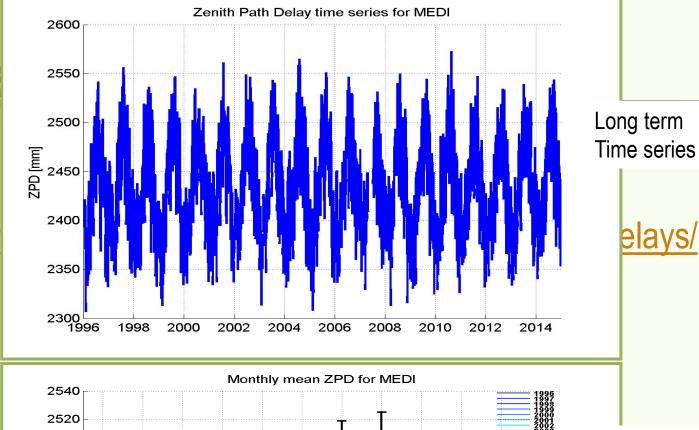
- + Daily combined solution from REPRO2
- + 5 individual solutions (ASI, GOP, IGE, LPT, MUT).
- + Bernese 5.2, GAMIT/GLOBK, GIPSY-OASIS II.

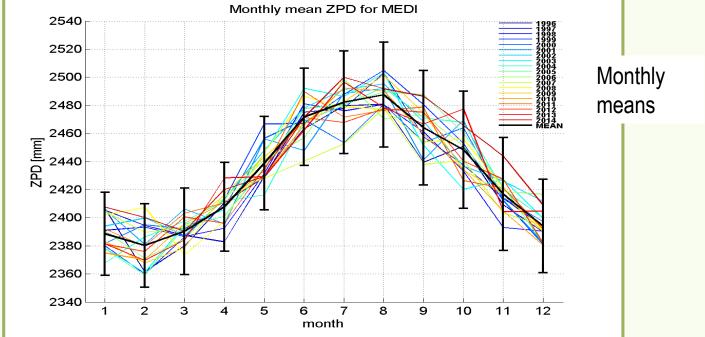
Combination software: Bernese 5.2 (ADDNEQ) and CATREF (tests).

Talk by K. Szafranek et al, Activities of the EPN Analysis Combination Centre, Session 2


EPN COORDINATORS

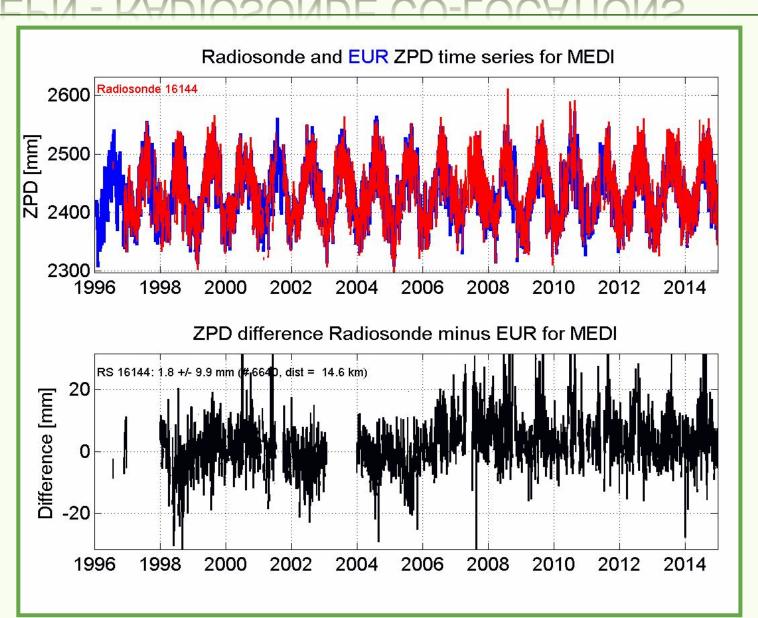
- **★** Network Coordinator, C. Bruyninx
- **★** Data flow Coordinator, G. Stangle
- * Real-time Analysis Coordinator, W. Söhne
- ★ Analysis Coordinator, K. Szafranek
- * Troposphere Coordinator, R. Pacione




2 ACs have larger std values

Restyled http://epr

ROB



180 EPN - RADIOSONDE CO-LOCATIONS

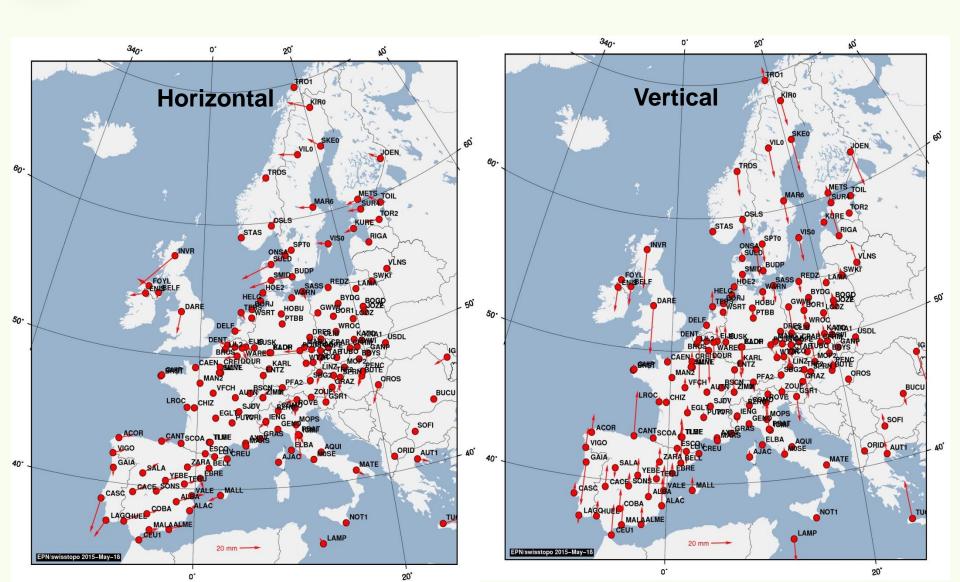
The radiosondes used are provided by DMI in the framework of the EUREF - EUMETNET MoU.

EPN COORDINATORS

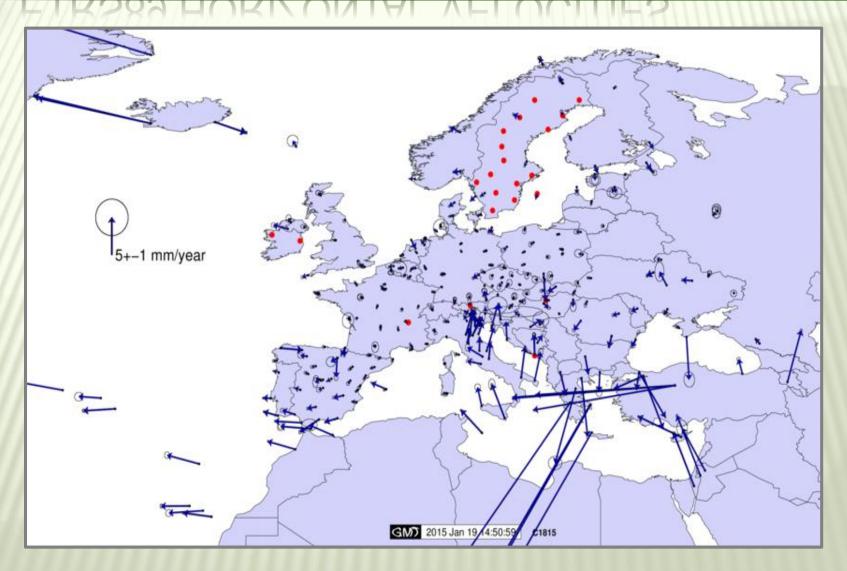
- **★** Network Coordinator, C. Bruyninx
- **★** Data flow Coordinator, G. Stangle
- * Real-time Analysis Coordinator, W. Söhne
- * Analysis Coordinator, K. Szafranek
- * Troposphere Coordinator, R. Pacione
- ★ Reference Frame Coordinator, A. Kenyeres

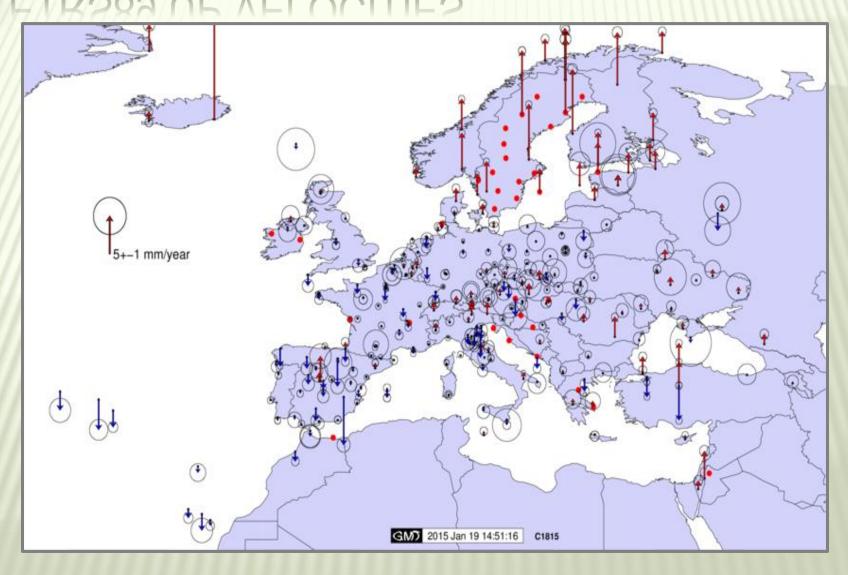
ETRS89 MAINTENANCE

15-weekly updates of multi-year EPN positions and velocities + In ETRF2000 / IGb08 (ITRF2008) – min. constraints on 14-param


based on weekly EPN coordinate solutions GPS wk 834 – now (last solution 1830)

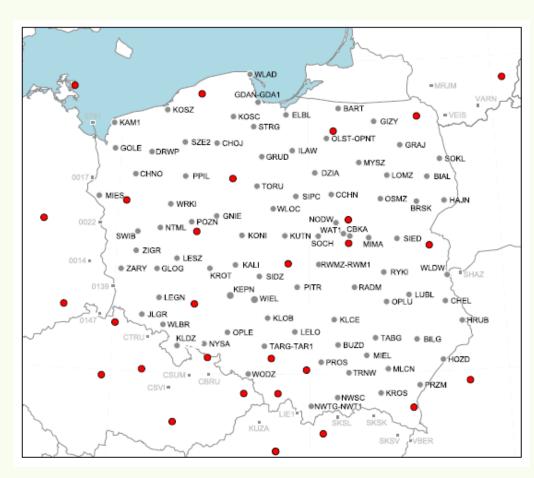
Published on EPN CB web site (positions & velocities, metadata, plots)


NATIONAL ETRS89 COORDINATES


ETRS89 HORIZONTAL VELOCITIES

ETRS89 UP VELOCITIES

STATION CATEGORIZATION



EUREF CAMPAIGN VALIDATIONS

Poland

- * ASG-EUPOS network
- **×** 4/2011-12/2014
- × Class A
- ★ 1cm acc.@ all epochs
- × ETRS89 densification

★ Talk by M. Ryczywolski in Session 1

EUREF CAMPAIGN VALIDATIONS

CEGRN: Central Europe

9 1-week Campaigns(1997-2013)

× ETRS89 densification

× 55 sites : Class A

× 80 sites: Class B

Talk by A. Caporali et al.

A contribution to ETRS89 in Central Europe: results from the CEGRN Activity, Session 2

COLLABORATIONS

* International GNSS Service

- Cross-fertilization
- Common standards
- EUREF involved in IGS Governing Board + WGs

* EUMETNET

- MoU signed June 2007
- Mutual exchange of data
- Talk by R. Pacione, COST Action ES1206: GNSS for Severe Weather and Climate (GNSS4SWEC)

COLLABORATIONS

- CERGOP, Central European GPS Geodynamic Network
 Consortium
 - MoU signed May 2011
 - * facilitate the densification of the European GNSS network for reference frame definition and geokinematical applications
 - ★ Talk by A. Caporali et al., A contribution to ETRS89 in Central Europe: results from the CEGRN Activity', Session 2
- **★** EUPOS, (European Position Determination System), partnership of DGNSS service providers
 - ★ MoU signed June 2014
 - Collaboration in the frame of EuroGeographics Knowledge Network on Positioning
 - × Several talks in Session 5

UNITED NATIONS

- With UN Initiative on Global Geospatial Information Management
 - + Global Geodetic Reference Frame Expert Group
 - + Resolution on the Global Geodetic Reference Frame for Sustainable Development (GGRF) adopted on Feb. 26, 2015
- **★** UNOOSA: UN Office for Outer Space Affairs
 - + International Committee on GNSS (ICG)
- **★** Talk by Z. Altamimi, United Nations Initiatives in relation with global geodetic reference frames, Session 5

MORE INFORMATION

- * EUREF
 - http://www.euref.eu/
- **×** EUREF Permanent Network
 - http://epncb.oma.be/
- × ETRS89
 - http://etrs89.ensg.ign.fr/
- * EVRS
 - http://www.bkg.bund.de/geodIS/EVRS/
- **X** CRS (Information system for European Coordinate Reference Systems)
 - + http://www.crs-geo.eu/

Thank you!