On the accuracy of Glacial Isostatic Adjustment models with special attention to ice models

Holger Steffen

holger-soren.steffen@lm.se

Holger Steffen, 2014-06-05, Vilnius, Lithuania

What is a GIA model?

- Actually developed to determine mantle viscosity for convection models and to describe sea-level variations
- Two major parts: (I) Earth model and (II) ice model
- Other information: Topography model (for ocean basin structure)
- Mathematical-physical theory relating the physics of the ice-earth-ocean changes to observational quantities
 - Earth and ice models are coupled via the sea-level equation
- Needs (III) observations to tune it
- Can take different processes/effects into account:
- Deformation
- Mass redistribution (ice, water, earth, sedimentation)
- Earth rotation
- Geoid & sea-level changes
- Stress changes

What do we expect from a GIA model?

A reference of/for

- Vertical motion (Present-day rate of uplift)
 - GPS, tide gauges, altimetry, levelling
 - Sea-level change
- Horizontal motion
 - GPS, VLBI, DORIS(?)
- Gravity change
 - AG, RG, GRACE/GRACE-FO, GOCE
- Geoid change
- Rotation changes (e.g. help in archaeology)

Help explain

- postglacial and recent seismic activity
- volcanic activity

Provide

- Excellent fit to observations in all parts of the world
- Uncertainty estimates or upper & lower bounds

Overview of ice models (not complete)

- Global: ICE (Peltier & Andrews 1976), ICE-2 (Wu & Peltier 1983), ICE-3G (Tushingham & Peltier 1991), ICE-4G (Peltier 1994), ICE-5G (Peltier 2004), ICE-6G (Peltier, in prep.), Amantev & Fjeldskaar, ANU-ICE (Lambeck et al., in prep.)
- Northern Hemisphere: NAWI (Zweck and Huybrechts 2005)
- Europe: FBKS8 (Lambeck et al. 1998, 2010), UMISM (Näslund 2008), "Stocchi model" (Stocchi et al., in prep.), GLAC (Tarasov et al. 2012)
- Greenland: KL05 (Fleming & Lambeck 2004), Milne et al. (in prep.)
- Antarctica: Huybrechts (1990), Hughes (1981), Ivins & James (2005), Whitehouse et al. (2012), Ivins et al. (2013)

The two types of ice models in GIA models

- "Classical approach":
 - Extent at different times from geological markers
 - Ice thickness adjusted with sea-level equation; solution fits available data, mainly RSL and tide-gauge data
 - Contains (strong) earth model information
- Thermo-mechanical:
 - Palaeo-climate data to govern the evolution of the ice sheet
 - Includes basal sliding, ice streams, ice-thickness distribution, growth and decay properties
 - Geological markers and RSL data may be used to constrain the reconstruction
 - May contain (weak) earth model information, mainly due to topography information

SLE ice model examples at LGM

10 500 1000 1500 2000 2500 3000 3500 4000

Thermal ice model examples at LGM

LANTMÄTERIET

What about their accuracy/uncertainty/errors?

- They (ice models) are not provided with uncertainty estimates...
- Many developers of SLE-driven ice models **insist** that their ice model is used with the nominal/corresponding earth model, especially when the GIA model is used in investigations!

GLAC models by Lev Tarasov

- Glaciological Systems Model (GSM)
- 3D thermo-mechanically climateforced model
- Tuned to ice margin information, present-day uplift, relative sea-level records
- Contains further input parameters (39 in total)
- Takes uncertainties in the constraints into account → generates posterior probability distributions for past ice sheet evolution (Tarasov et al., 2012)

ANTMÄTERIET

Observations vs. GIA model results

Different ice models with a VM2-like earth model

Earth models

How well fits a GIA model?

- ~1100 GIA models are compared to the NKG2005LU model
- GIA model: RSES ice model and a 1D (spherically symmetric) earth model with three varied parameters
- Best earth model: lithospheric thickness = 120 km, upper-mantle viscosity = 10²¹ Pa s, lower-mantle viscosity = 2 x 10²¹ Pa s

How good fits a GIA model?

How well fits a GIA model?

RSES ice model with different earth models

Comparison NKG2005LU to best-fitting RSES2 – Earth model

Agren and Svensson (2007)

192 rses2

Comparison Gitlein (2009) AG observations to this RSES2 – Earth model

Gitlein (2009)

192 rses2

Comparison NKG2005LU to best-fitting ICE-5G – Earth model

Agren and Svensson (2007) p82_ice5g 70° 70° 60° 60° Lith: 160 km UM: 7 x 10²⁰ Pa s **50° 50°** LM: 2 x 10²¹ Pa s 10° **20° 30° 20° 30°** 10°

Comparison Gitlein (2009) AG observations to

-0.4

0.0

0.4

-0.8

-1.2

-2.0

0.8

Comparison GRACE observation to this ICE-5G – Earth model

GFZ

p82_ice5g

μGal/yr –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5

Take-homes

- A GIA model is a combination of an earth model and an ice model
- There are different types of ice models
- There are different types of earth models (rheology, heterogeneity,...) and modelling techniques
- GIA) modelling techniques are benchmarked and agree quite well
- The majority of ice models does NOT provide uncertainty estimates
- GIA model development is an iterative process
- A well-fitting GIA model for one quantity may NOT fit another quantity well!

Acknowledgements

Valentina Barletta (DTU Space) Willy Fjeldskaar (Tectonor) Georg Kaufmann (FU Berlin) Kurt Lambeck (RSES Canberra) Glenn Milne (University of Ottawa) Jens-Ove Näslund (SKB) Maaria Nordman (FGI) Matthew Simpson (Kartverket) Lev Tarasov (Memorial University of Newfoundland)

Thank you for your attention!

