RESTRICTED MAXIMUM LIKELIHOOD **ESTIMATION OF SPATIAL COVARIANCE** PARAMETERS OF **GEODETIC DATA**

Wojciech Jarmołowski

Least-squares collocation (prediction, interpolation...?) – one kind of data

LSC (interpolation)

$$\hat{\mathbf{z}}_{r} = \mathbf{C}_{P}^{\mathrm{T}} \left(\mathbf{C} + \mathbf{N} \right)^{-1} \mathbf{z}_{r}$$

Gauss-Markov 3rd order model. Spherical distance ψ used

Homogeneous noise (except last example)

Lower order trend - Projection matrix

$$GM3(C_0, CL, \psi) = C_0 \left(1 + \frac{\psi}{CL} + \frac{\psi^2}{3 \cdot CL^2} \right) \cdot \exp\left(\frac{-\psi}{CL}\right)$$

$$\mathbf{D} = \delta n^2 \cdot \mathbf{I}_n$$

$$\mathbf{P} = \mathbf{I}_{n} - \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}}$$
$$\mathbf{X} = \begin{bmatrix} 1 & \varphi_{1} & \lambda_{1} & \varphi_{1}^{2} & \lambda_{1}^{2} & \varphi_{1} \lambda_{1} \\ \dots & \dots & \dots & \dots \\ 1 & \varphi_{n} & \lambda_{n} & \varphi_{n}^{2} & \lambda_{n}^{2} & \varphi_{n} \lambda_{n} \end{bmatrix}$$

Detrending of the data

Second order

Third order

Analytical trend from points, computed e.g. in grid nodes

Second order

Third order

Restricted Maximum Likelihood (REML)

Distribution function

$$p(\mathbf{z}, \mathbf{\theta}) = \left| \mathbf{C}(\mathbf{\theta}) \right|^{-1/2} \left| \mathbf{X}^{\mathrm{T}} \mathbf{C}(\mathbf{\theta})^{-1} \mathbf{X} \right|^{-1/2} \exp\left(-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{R}(\mathbf{\theta}) \mathbf{z}\right)$$

Negative log-likelihood

$$NLLF(\mathbf{z}, \mathbf{\theta}) = \frac{1}{2} \ln |\mathbf{C}(\mathbf{\theta})| + \frac{1}{2} \ln |\mathbf{X}^{T}\mathbf{C}(\mathbf{\theta})^{-1} \mathbf{X}| + \frac{1}{2} (\mathbf{z}^{T}\mathbf{R}(\mathbf{\theta})\mathbf{z})$$

R matrix (including projection) $\mathbf{R}(\boldsymbol{\theta}) = \mathbf{C}(\boldsymbol{\theta})^{-1} \mathbf{P} = \mathbf{C}(\boldsymbol{\theta})^{-1} \left[\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\mathrm{T}} \mathbf{C}(\boldsymbol{\theta})^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{C}(\boldsymbol{\theta})^{-1} \right]$

Additionally crosss-validation. Here - leave-one-out (LOO) validation. Std dev. of differences between the estimates and point EURE 2014 Symposium Vilnius, Lithuania

REML in space of three parameters: Signal variance (C_0), noise variance (δn),

correlation length of the model (CL)

Example of GNSS/leveling geoid data

REML. NLLF minima for GNSS/lev. geoid

Western USA

EUREF 2014 Symposium Vilnius, Lithuania

LOO. Std dev. of differences for GNSS/lev. geoid

Western USA

Houston

REML compared to LOO (GNSS/lev.)

Western USA

Houston

MOLA topography example. (Mars Orbiter Lunar Altimeter)

EUREF 2014 Symposium Vilnius, Lithuania

x 10

REML. NLLF minima for MOLA altimetry

Olympus Mons

LOO. Std dev. of differences for MOLA altimetry

Olympus Mons

Inca City

REML compared to LOO (MOLA)

Olympus Mons

Inca City

Bouguer gravity sampled with the use of different resolutions

Fit of the covariance function

EUREF 2014 Symposium viinius, Litnuania

Histograms

EUREF 2014 Symposium VIInius, Lithuania

REML. NLLF minima for gravity anomalies

 $\Delta g_{\scriptscriptstyle B} 0.5^{\circ}$

 $\Delta g_{\scriptscriptstyle B}$ 0.25°

REML. NLLF minima for gravity anomalies

 $\Delta g_{\scriptscriptstyle B} 0.1^{\circ}$

 $\Delta g_{_B} \ 0.03^\circ$

LOO. Std dev. of differences for gravity anomalies

 $\Delta g_{\rm B} 0.5^{\circ}$

 $\Delta g_{\scriptscriptstyle B}$ 0.25°

LOO. Std dev. of differences for gravity anomalies

 $\Delta g_{_B} \ 0.1^\circ$

 $\Delta g_{_B}~0.03^\circ$

REML compared to LOO (gravity anomalies)

 $\Delta g_{\scriptscriptstyle B} 0.5^{\circ}$

 $\Delta g_{\scriptscriptstyle B}$ 0.25°

REML compared to LOO (gravity anomalies)

 $\Delta g_{\scriptscriptstyle B} 0.1^{\circ}$

 $\Delta g_{_B}~0.03^\circ$

REML estimation of a priori noise (δn_i) for two subsets (C₀ and CL are fixed)

Data are split using cross-validation (LOO) values

EUREF 2014 Symposium Vilnius, Lithuania

REML for different a priori noise standard deviations

... and validation afterwards (also LOO)

LOO validation confirms REML estimates

REML estimation of CL can differ in relation to CL from the covariance function fitting

REML minimum indicating noise standard deviation varies with the change of resolution (different highest frequency – different contribution of uncorrelated part?).