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Introduction

d  Minimally constrained (MC) network adjustment
is a standard tool for geodetic frame realizations.

d  Optimal weighting for the reference stations
(within the MCs) has not been dealt with.

d The aim of this paper is to resolve the reference
station weighting problem in the MC framework
based on an optimal statistical setting.
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Minimal constraints on reference stations

E(X—Xref) =0  or, more generally EP(X—Xref) =0

Un-resolved issue: choice of the weight matrix P




The matrix E
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Example

(x; =x") = 0
Classic form of lz

NNT/NNR conditions ]
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Zpi (x; —x") = 0
Weighted form of ,-
NNT/NNR conditions Z X0 pr (x; —x") = 0
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Simplified scheme: diagonal weight matrix with a single scalar
weight for each reference station



Example

D (x —xih) = 0
I

Z X% (x; —x) = 0

I

D B (x —xF) = 0
Weighted form of ,-
NNT/NNR conditions .
Z X; X (Pi (x; —X

Classic form of
NNT/NNR conditions

) = 0
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Simplified scheme: block-diagonal weight matrix with a single
weight matrix for each reference station



Frame optimality in classic
(un-weighted) MC adjustment

1 The realized frame of the adjusted network is
optimized at the stations participating in the MCs

(what about the other network stations?)

1 The optimality of the realized frame considers only
the data noise effect in the estimated coordinates

(what about the “datum noise” effect?)

1 Optimization of derived frame-dependent quantities
(e.g. horizontal coordinates) is not guaranteed!



What do “classic” MCs optimize?

reference stations
Rank-deficient NEQs: N {} =u
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MCs applied to reference stations: E(x-— X )=0

Covariance matrix of MC solution:
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Minimization of data noise effect
only at the reference stations!

Data noise effect



What can “weighted” MCs optimize?

@ reference stations
N EP(x—x"")=0
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Minimization of data noise over any station group
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Minimization of data/datum noise over any station group
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What can “weighted” MCs optimize?

@ reference stations
N EP(x—x"")=0
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Minimization of data/datum noise on other derived
frame-dependent quantities

(A] = f(f(,f(’) e.g. horizontal coordinates, geometric heights
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Datum choice problem

Rank-deficient NEQs
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Arbitrary MCs
H(x - xref) =0
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Optimization problem to be solved
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where S is a “station selection” matrix, a Jacobian matrix,

or a combination of such matrices



Problem solution

Frame/network optimality principle
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Optimal MC matrix (applied to reference stations)
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(*) see Kotsakis (2013, JGeod) for the entire network (NE"=0)




Numerical tests

O EPN network — EUR17807.SNX

O QObtain weekly NEQs + remove inherent datum info
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O Compare the weighted and un-weighted
MC solutions (IGb08 frame)



Comparison between weighted
& un-weighted MC solutions
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Comparison between weighted
& un-weighted MC solutions
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Comparison between weighted
& un-weighted MC solutions
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Conclusions

d Reference station weighting (within the MCs) can
lead to different types of frame optimality

d Reference station weighting can be used to optimize
the accuracy of a MC solution in terms of

- the data and datum noise effects

- the network stations over which these effects are

considered

d  Detailed numerical testing will be presented
in a forthcoming paper



Thanks for your attention !



