Solving the reference station weighting problem in minimally constrained networks

C. Kotsakis

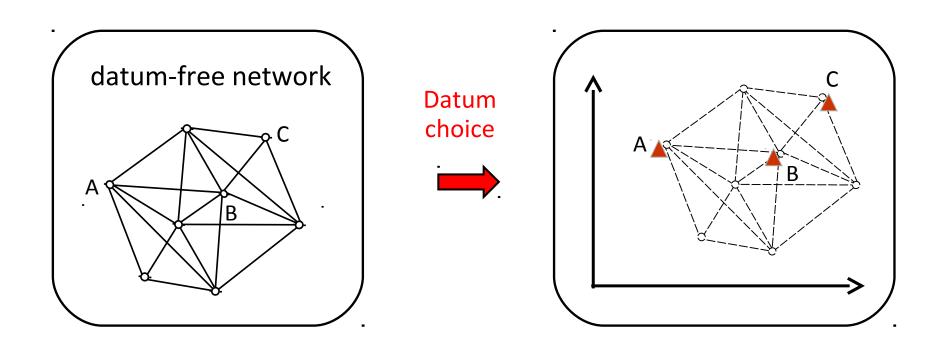
Department of Geodesy and Surveying Aristotle University of Thessaloniki Greece

EUREF Annual Symposium
Vilnius, Lithuania, June 3-7, 2014

Introduction

- Minimally constrained (MC) network adjustment is a standard tool for geodetic frame realizations.
- Optimal weighting for the reference stations (within the MCs) has not been dealt with.
- The aim of this paper is to resolve the reference station weighting problem in the MC framework based on an optimal statistical setting.

Rationale



Minimal constraints on reference stations

$$\mathbf{E}(\mathbf{x} - \mathbf{x}^{ref}) = \mathbf{0}$$
 or, more generally $\mathbf{EP}(\mathbf{x} - \mathbf{x}^{ref}) = \mathbf{0}$

Un-resolved issue: choice of the weight matrix P

The matrix E

	<u> </u>	0	0	• • •	1	0	0
	0	1	0	•••	0	1	0
	0	0	1	•••	0	0	1
$\mathbf{E} =$	0	z_1	$-y_1$	• • •	0	Z_{m}	$-y_m$
	$-z_1$	0	x_1	•••	$-z_m$	0	x_m
	y_1	$-x_1$	0	•••	\mathcal{Y}_m	$-x_m$	0
	x_1	\mathcal{Y}_1	z_1	• • •	x_m	\mathcal{Y}_{m}	Z_m

Example

Classic form of NNT/NNR conditions

$$\sum_{i} (\mathbf{x}_{i} - \mathbf{x}_{i}^{\text{ref}}) = \mathbf{0}$$

$$\sum_{i} \mathbf{x}_{i}^{o} \times (\mathbf{x}_{i} - \mathbf{x}_{i}^{ref}) = \mathbf{0}$$

Weighted form of NNT/NNR conditions

$$\sum_{i} p_i \left(\mathbf{x}_i - \mathbf{x}_i^{\text{ref}} \right) = \mathbf{0}$$

$$\sum_{i} \mathbf{x}_{i}^{o} \times p_{i} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{\text{ref}} \right) = \mathbf{0}$$

Simplified scheme: diagonal weight matrix with a single scalar weight for each reference station

Example

Classic form of NNT/NNR conditions

$$\sum_{i} (\mathbf{x}_{i} - \mathbf{x}_{i}^{\text{ref}}) = \mathbf{0}$$

$$\sum_{i} \mathbf{x}_{i}^{o} \times (\mathbf{x}_{i} - \mathbf{x}_{i}^{ref}) = \mathbf{0}$$

Weighted form of NNT/NNR conditions

$$\sum_{i} \mathbf{P}_{i} (\mathbf{x}_{i} - \mathbf{x}_{i}^{\mathrm{ref}}) = \mathbf{0}$$

$$\sum_{i} \mathbf{x}_{i}^{o} \times \left(\mathbf{P}_{i} \left(\mathbf{x}_{i} - \mathbf{x}_{i}^{\text{ref}} \right) \right) = \mathbf{0}$$

Simplified scheme: block-diagonal weight matrix with a single weight matrix for each reference station

Frame optimality in classic (un-weighted) MC adjustment

- ☐ The realized frame of the adjusted network is optimized at the stations participating in the MCs (what about the other network stations?)
- The optimality of the realized frame considers only the data noise effect in the estimated coordinates (what about the "datum noise" effect?)
- Optimization of derived frame-dependent quantities (e.g. horizontal coordinates) is not guaranteed!

What do "classic" MCs optimize?

Rank-deficient NEQs:
$$N\begin{bmatrix} \delta x \\ \delta x' \end{bmatrix}$$
 reference stations $= u$

MCs applied to reference stations: $\mathbf{E}(\mathbf{x} - \mathbf{x}^{\text{ref}}) = \mathbf{0}$

Covariance matrix of MC solution:

$$\Sigma = \mathbf{N}^- = \begin{bmatrix} \Sigma_{\hat{\mathbf{X}}} & \Sigma_{\hat{\mathbf{X}}\hat{\mathbf{X}}'} \\ \Sigma_{\hat{\mathbf{X}}'\hat{\mathbf{X}}} & \Sigma_{\hat{\mathbf{X}}'} \end{bmatrix}$$
 Minimum trace

Data noise effect

Minimization of data noise effect only at the reference stations!

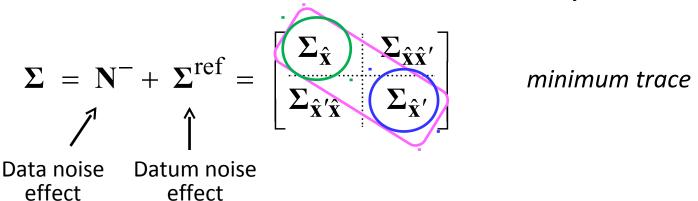
What can "weighted" MCs optimize?

$$\mathbf{N} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{x}' \end{bmatrix} = \mathbf{u} \qquad \qquad \mathbf{E} \mathbf{P} (\mathbf{x} - \mathbf{x}^{ref}) = \mathbf{0}$$

Minimization of data noise over any station group

$$oldsymbol{\Sigma} = \mathbf{N}^- = egin{bmatrix} oldsymbol{\Sigma}_{\hat{\mathbf{X}}} & oldsymbol{\Sigma}_{\hat{\mathbf{X}}\hat{\mathbf{X}}'} \ oldsymbol{\Sigma}_{\hat{\mathbf{X}}'} & oldsymbol{\Sigma}_{\hat{\mathbf{X}}'} \end{pmatrix}$$
 minimum trace

Minimization of data/datum noise over any station group



What can "weighted" MCs optimize?

reference stations
$$\mathbf{N} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{x}' \end{bmatrix} = \mathbf{u} \qquad \mathbf{E} \mathbf{P} (\mathbf{x} - \mathbf{x}^{ref}) = \mathbf{0}$$

Minimization of data/datum noise on other derived frame-dependent quantities

$$\hat{\mathbf{q}} = \mathbf{f}(\hat{\mathbf{x}}, \hat{\mathbf{x}}')$$
 e.g. horizontal coordinates, geometric heights

$$oldsymbol{\Sigma}_{\hat{\mathbf{q}}} = oldsymbol{\mathbf{Q}} oldsymbol{\Sigma}_{\hat{\mathbf{X}}} oldsymbol{\Sigma}_{\hat{\mathbf{X}}} oldsymbol{\Sigma}_{\hat{\mathbf{X}}'\hat{\mathbf{X}}} oldsymbol{\Sigma}_{\hat{\mathbf{X}}'} oldsymbol{\mathbf{Q}}^T$$
 minimum trace

Datum choice problem

Rank-deficient NEQs
$$N \begin{bmatrix} \delta x \\ \delta x' \end{bmatrix} = u$$

$$= u$$

Arbitrary MCs $\mathbf{H}(\mathbf{x} - \mathbf{x}^{\text{ref}}) = \mathbf{0}$

Optimization problem to be solved

$$\min_{\mathbf{H}} \ trace \ \mathbf{S} \begin{bmatrix} \boldsymbol{\Sigma}_{\hat{\mathbf{X}}} & \boldsymbol{\Sigma}_{\hat{\mathbf{X}}\hat{\mathbf{X}}'} \\ \boldsymbol{\Sigma}_{\hat{\mathbf{X}}'\hat{\mathbf{X}}} & \boldsymbol{\Sigma}_{\hat{\mathbf{X}}'} \end{bmatrix} \mathbf{S}^T \quad \text{Total CV matrix}$$
of MC solution

where **S** is a "station selection" matrix, a Jacobian matrix, or a combination of such matrices

Problem solution

Frame/network optimality principle

$$\begin{array}{|c|c|c|c|c|c|}\hline\hline & \min \ trace \ \mathbf{S} \begin{bmatrix} \boldsymbol{\Sigma}_{\hat{\mathbf{X}}} & \boldsymbol{\Sigma}_{\hat{\mathbf{X}}\hat{\mathbf{X}}'} \\ \boldsymbol{\Sigma}_{\hat{\mathbf{X}}'\hat{\mathbf{X}}} & \boldsymbol{\Sigma}_{\hat{\mathbf{X}}'} \end{bmatrix} \mathbf{S}^T \\ \hline \end{array}$$

Optimal MC matrix (applied to reference stations)

$$\mathbf{H} = \mathbf{E} \left(\mathbf{Q} \mathbf{\Sigma} + \mathbf{x}^{\text{ref}} \right)^{-1}$$

optimal weight matrix

(*) see Kotsakis (2013, JGeod)

where:

$$(\mathbf{N} + \mathbf{S}^T \mathbf{S} \tilde{\mathbf{E}}^T \tilde{\mathbf{E}} \mathbf{S}^T \mathbf{S})^{-1} = \begin{bmatrix} \mathbf{Q}_{\mathbf{X}} & \# \\ \# & \# \end{bmatrix}$$

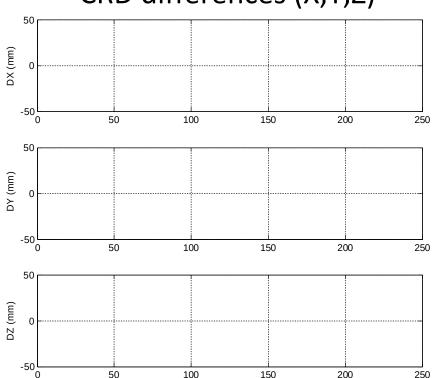
inner-constraint matrix for the entire network ($\widetilde{NE}^{T}=0$)

Numerical tests

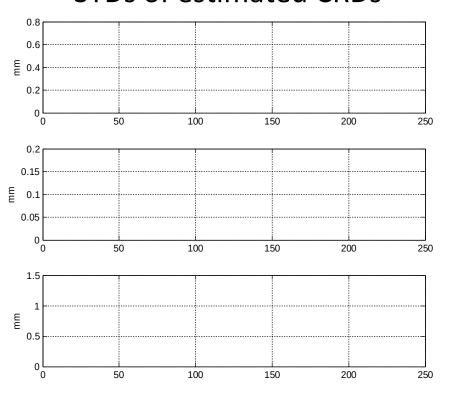
- EPN network EUR**1780**7.SNX
- Obtain weekly NEQs + remove inherent datum info

$$\mathbf{N} \begin{bmatrix} \mathbf{\delta} \mathbf{x} \\ \mathbf{\delta} \mathbf{x}' \end{bmatrix} = \mathbf{u} , \quad \mathbf{N} \tilde{\mathbf{E}}^T = \mathbf{0}$$

 Compare the weighted and un-weighted MC solutions (IGb08 frame)

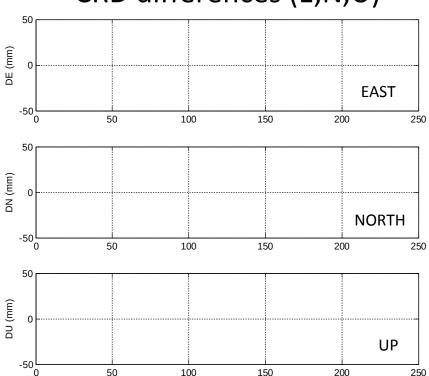


STDs of estimated CRDs

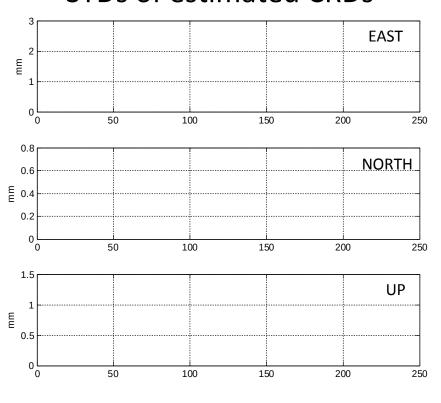


5 reference stations, **S** = **I**

Un-weighted MCs
Weighted MCs

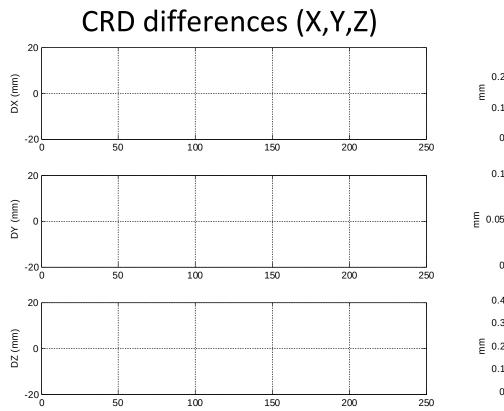


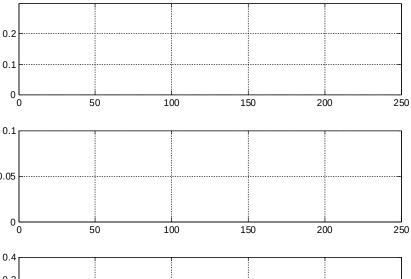
STDs of estimated CRDs



5 reference stations, **S** = **I**

Un-weighted MCs
Weighted MCs





STDs of estimated CRDs

20 reference stations, **S** = **I**

Un-weighted MCs
Weighted MCs

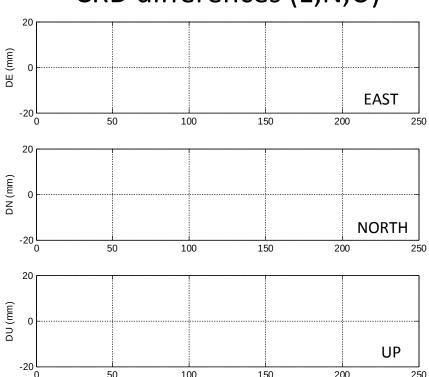
150

200

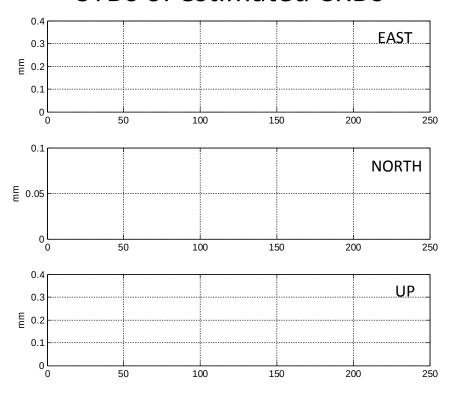
250

100

50



STDs of estimated CRDs



20 reference stations, **S** = **I**

Un-weighted MCs
Weighted MCs

Conclusions

- Reference station weighting (within the MCs) can lead to different types of frame optimality
- Reference station weighting can be used to optimize the accuracy of a MC solution in terms of
 - the data and datum noise effects
 - the network stations over which these effects are considered
- Detailed numerical testing will be presented in a forthcoming paper

Thanks for your attention!