

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra armasuisse Bundesamt für Landestopografie swisstopo

wissen wohin savoir où sapere dove knowing where

swisstopo

GNSS and Tachymetry for Monitoring the stability of Permanent Reference Station

Example Zimmerwald

E. Brockmann, D. Ineichen, P. Mahler

Elmar Brockmann Federal Office of Topography swisstopo

Campaign details

- Dates:14. 25. June 2013
- Temperatures: 5-30 °C

25-06

27-06

sunny

21-06

23-06

19-06

Elmar Brockmann Federal Office of Topography swisstopo

15-06

17-06

30

25

20

10

5

0

13-06

រ្ 15

D **Automatic measurements using (parts** of) Leica GeoMoS

)0

Terrestrial: absolute versus relative

Elmar Brockmann Federal Office of Topography swisstopo

Terrestrial results ZIMM+ZIM2: Height

Top

Differential: Top – Reference point-

dHeight= f (Temp) -> extension coefficient of steel 11.8e⁻⁶K⁻¹: dT 10 °C -> dh 1.2 mm

Differential to bottom point Terrestrial results ZIM2: Horizontally

Differential to bottom point

--ZIM2

TIM2.P2

←ZIM2.P1

ശ

Terrestrial results ZIMM+ZIM2: Horizontally, June 17

Terrestrial results ZIMM+ZIM2: max. horizontal movements 2 hot days

Elmar Brockmann Federal Office of Topography swisstopo

U **GNSS** Analysis

- ZIMM, ZIM2, ZIMJ nested in 3 AGNES stations
- ZIM3=Galileo receiver at ZIM2 antenna
- L1 short baselines
- 2 weeks (June 11-25; DOY 162 176)
- No troposphere estimation for short baselines

Elmar Brockmann Federal Office of Topography swisstopo

(identical

Zero baseline: Hot day June 19 Kinematic coordinates: ZIM2-ZIM3

Kinematic repeatability (S) for ZIM2 14001M008 - ZIM3 14001M008 (0.0 km)

Real baseline GNSS: Hot day June 19 Kinematic coordinates: ZIM2-ZIMJ

Kinematic repeatability (S) for ZIMJ 14001M006 - ZIM2 14001M008 (0.0 km)

Real baseline GPS: Hot day June 19 Kinematic coordinates: ZIMM-ZIMJ

Kinematic repeatability (S) for ZIMJ 14001M006 - ZIMM 14001M004 (0.0 km)

Repeatability kinematic coordinates

- Example day June 19 (hot day)
- Horizontal repeatability 2 mm enough?
 - GNSS: less noise some signals visible (temperature movements?)
 - GPS: more noise difficult to see signals

Comparison GNSS with terrestrial ground truth: ZIMM/ZIM2 June 19

PPP solutions

 Absolute station monitoring – no reference station – no baselines! – results in ITRF2008!

PPP solutions:

- CODE: GNSS with 30 second clocks, every 5 min. CRD
- swisstopo: GPS with 30 second clocks, every 30 sec. CRD

All solutions: ZIM2 June 19

ZIM2 North 19.06.2013

ZIM2 East 19.06.2013

All solutions: ZIM2 June 19

Common mode residuals for PPP !

GNSS slightly less epoch-to-epoch noise

ZIM2 North 19.06.2013

ZIM2 East 19.06.2013

Elmar Brockmann Federal Office of Topography swisstopo

Conclusions

- 9-Meter mast movements of peak-to-peak
 - 8 mm horizontally during hot, sunny days
 - 2 mm vertically (temperature depended dT)
 - Terrestrial estimation precision of ~0.2 mm!
- Daily mean horizontal positions + night observations are not biased -> local tie measurements under cloudy condition
- GNSS not able to reliably measure these horizontal movements
 - GNSS kinematic baselines L1
 - Std of 2 mm horizontally, but not precise enough
 - GNSS kin. results less noise compared to GPS-only
 - PPP kinematic solutions GNSS+GPS
 - Std of 10 mm horizontally
 - Attractive for larger movements (>5 cm) without reference stations

Thank you for your attention!

E.