

Modernization of the German Height Reference Frame – First Results

Martina Sacher¹, Gunter Liebsch¹, Jan Müller^{1,} Cord-Hinrich Jahn²

¹Federal Agency for Cartography and Geodesy

²Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany (AdV)

- 1. Objectives of the project
- 2. Development of the leveling network design
- 3. Project management and leveling analyzis
- 4. Draft of new German height reference system

1. Objectives of the Project

- levelings used in German Height Reference Frame (DHHN92) were up to 30 years old at the beginning of the project
- reliability and validity are limited due to yearly damage of benchmarks and height variations, e.g. caused by mining industry (coal, salt, gas production)
- possible strain in the network because DHHN92 is a combination of two networks with different epochs in the adjustment of DHHN92

Objectives:

- verification and modernization of the height reference frame
- project comprise the relevelings, GNSS observations (250 stations) and absolute gravity measurements (100 stations) during the same observation epoch (2006-2012) as a uniform and consistent basement of all reference frames (positioning, height and gravity)
- improvement of German quasigeoid ——— improved possibility of height determination with GNSS methods and SAPOS[®]
- detection of height variations and network strains

2. Development of the Leveling Network Design (1)

- surveying is in the responsibility of the German states
- coordinated by the "Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany" (AdV)
- AdV decided in 2005 to start the project
- Initial plan reobservation of only 54% of the first order levelling network DHHN92
- 14 136km length of leveling lines
- Network design was open

2. Development of the Leveling Network Design (2)

- financial and human resources for surveying are different in the German states
- most of them extended their part of the network in the years after 2005
- stepwise modification of the network design
- some states included former2. order lines
- total length of leveling lines (2013): 29 960 km (114% of DHHN92)

3. Project Management and Leveling Analyzis

- Project team "Modernization of DHHN":
 - formulation of instructions concerning measurements, instrument checking and data delivering
 - coordination of network design
 - monitoring of the progress (project time schedule)
 - permanent quality control (<u>closing errors</u>, <u>comparison of height differences along</u> <u>the lines</u>)
 - successive analyzing of incoming measurements
- Analyzing of leveling data by 2 computing centers using different adjustment software and approach
 - surveying authority of North Rhine Westphalia (NRW) adjustment of normal heights
 - BKG adjustment of geopotential values
 - comparison of the resulting normal heights of 2 test networks
 - as a result parts of the software were revised (number of digits, replacement of approximation formulas by exact formulas)

4. Draft of New German Height Reference System

Specification	New realization (draft)	Current realization (DHHN92)		
datum	NAP			
scale	SI - Meter			
realization of the scale	rod scale and temperature correction, determined by vertical comparator	rod scale and temperature correction		
adjustment	free			
realization of the datum	<u>ca. 70 points (fundamental</u> <u>benchmarks + GNSS+ ref. stations)</u>	1 point		
heights of the datum points	heights from DHHN92, no velocity supposed	geop. value from UELN 73/86, no velocity supposed		
physical parameter	normal gravity field of GRS80			
kind of heights	normal heights			
solid earth tides	mean tide, variable part eliminated	mean tide , variable part not eliminated		
ocean load effects	eliminated (Northern Germany)	not eliminated		

Motorized Leveling, applied in Mecklenburg – Vorpommern

EUREF symposium 2013 Budapest

Closing Errors (status March 2013)

Example of Suspected Systematic Errors Correlating with Height

Federal Agency for

Cartography and Geodesy

summarized height variations in mm Height in m -10 -20 height variations run parallel to height profile -30 -40 -50 distance in km

166-094

→ 2010-1985 → 2010-1960 → Höhenprofil

EUREF symposium 2013 Budapest

- total length of the observed lines available at analyzing centers:
 29 660 km
- still expected before July 2013: ca. 300 km lines

Preliminary adjustment March 2013 computed with 99% of the data:

285

- observations: 58 168
- points: 57 885
- degrees of freedom
- s₀ 1km leveling: 0,67 mm (DHHN92: 0,86 mm)

Height Variations Compared to DHHN92 after Preliminary Adjustment

Status April 2013

- interpretation is pending
- in the DHHN92 adjustment had been included border loops to some neighboring countries (CZ, AT, CH), in the current adjustment no foreign loops are included
- northernmost area (island of Rügen) : assumed uplift because of postglacial rebound

Planned Datum Points

- 7 fundamental benchmarks
- future possibility to maintain the datum by GNSS:
- 3 reference stations
 - HOBU (EPN)
 - GELL, HOFJ (GREF)
- 63 stations of the <u>GNSS</u> <u>campaign 2008</u>
- selection criteria
 - sited at old line of DHHN92
 - geologically stable area
 - special pillar marker
 - at least 2 reference markers

GNSS Campaign as Part of the Project

- leveling, GNNS and absolute gravity measurements on 250 identical points
- observation campaign in May/June 2008
- 2 X 24 h
- precision position ≈ 1 mm, height
 ≈ 3 mm
- absolute gravity observed by A10
- GNSS stations will be part of the German Geodetic Fundamental Network

- Leveling lines epoch 2006-2012

Stations of the GNSS campaign 2008

Comparison and Validation of Ocean Tide Models (1)

- used Software: SPOTL, D.C Agnew, IGPP, University of California in combination with software by Mirko Scheinert (TU Dresden)
- comparison of global models of ocean tides:

1. eot11a.2011	(DGFI Munich)	
2. dtu10.tr.2010	(DTU Space, Copenhagen)	
3. fes.2004	(LEGOS, CLS, CNES, France)	
4. got4p7.2004	(Goddard Ocean Tide Model)	
5. osu.tpxo72.2010	(Oregon State University-OSU)	
6. osu.tpxo72atlas.2011	(Oregon State University-OSU)	

- in the area of North Sea the global model was replaced by regional model:
 - 7. eot11a.2011+ osu.europeshelf.2008
 - 8. dtu10.tr.2010+ osu.europeshelf.2008

Comparison and Validation of Ocean Tide Models (2)

- validation of ocean tide models by data of 9 tide gauges at the German North Sea coast
- best results arised from:
 - dtu10.tr.2010+ osu.europeshelf.2008 (model 8) (DTU Space, Copenhagen)
 - eot11a.2011+ osu.europeshelf.2008 (model 7) (DGFI Munich)

EUREF symposium 2013 Budapest

Consideration of Ocean Load Effects (1)

- network parts of 4 Northern German states (82 loops)
- use of 8 different ocean tide models
- comparison of the standard deviation from loop errors in mm/km
- best results: eot11a.2011(DGFI) + North Sea (OSU)

Without	Solid	Mean tide + Ocean load							
tidal correction	earth tides	1	2	3	4	5	6	7	8
0.551	0.542	0.536	0.539	0.539	0.540	0.539	0.539	<mark>0.535</mark>	0.539

Consideration of ocean load effects (2)

- network parts of 4 Northern German states (82 loops)
- use of 8 different ocean tide models
- comparison of the standard deviation from loop errors in mm/km
- best results: eot11a.2011(DGFI) + North Sea (OSU)
- Network part of Bavaria in the South of Germany: no influence of ocean load effects in leveling results

Influence of tidal corrections and ocean load effects

 Standard deviation from the adjustment of 4 Northern German states in mm/km:

	Without tidal correction	Mean tide	Mean tide + Ocean load (eot11a.2011+North sea)		
4 Northern states	0.59	0.59	0.58		
s ₀ of single states from variance component estimation:					
НН	0.37	0.35	0.35		
MV	0.52	0.51	0.50		
NI	0.65	0.65	0.65		
SH	0.36	0.35	0.34		

- Variation of adjusted heights:
 - Mean tide without correction:
- -1.6mm ... 2.3mm
- Additional effect of ocean load:
- -0.5mm ... 1.0mm

