

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra armasuisse Bundesamt für Landestopografie swisstopo

wissen wohin savoir où sapere dove knowing where

swisstopo

Update of EUREF GNSS Analysis to Bernese SW V5.2: New Features and Impact on Results

S. Schaer, D. Ineichen, E. Brockmann

Bernese GNSS Software Version 5.2

- Bernese GNSS Software Version 5.2 (BSW V5.2) was announced on 18 December 2012 in BSW Mail No. 310 (please be referred to <u>www.bernese.unibe.ch</u> >Support >BSW Mail Index and in particular to >Features)
- BSW V5.2 downloaded/installed via CVS access from the AIUB computer cluster. Other BSW versions (e.g. current development V5.3) would be accessible to us (PNAC), too.
- Special note: A number of BSW V5.2 changes originates from further developments, or ideas made at PNAC: improved baseline forming (SNGDIF), improved phase data preprocessing for short baselines (MAUPRP), GLONASS ambiguity resolution, "inter-system translation parameters" (GPSEST/ADDNEQ2), etc.

BSW V5.0(+) to BSW V5.2: Approach

Two step approach:

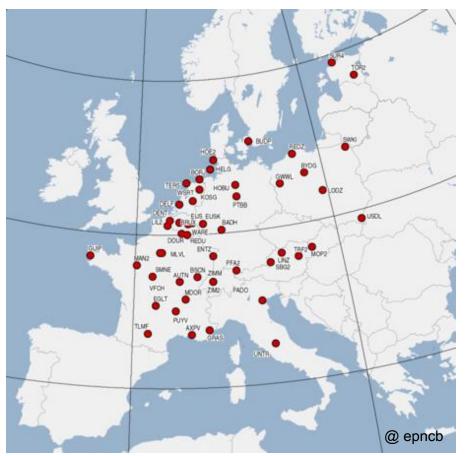
Step 1: BSW V5.0(+) to BSW V5.2 with options as close as possible to "old" processing with BSW V5.0

Step 2: Activation of new options, among others:

- Troposphere: GMF/GPT, Chen-Herring for gradients
- Receiver antenna calibration (PCV) values for GLONASS
- IERS2010 conventions
- Higher-order ionosphere
- Moderate handling of potential GPS quarter-cycle phase biases
- (GPS-GLONASS inter-system translation and troposphere bias parameters set up, but "deleted" for final solution)

Alternative approach:

Consideration of RNX2SNX BPE V5.2 → EUREF reprocessing

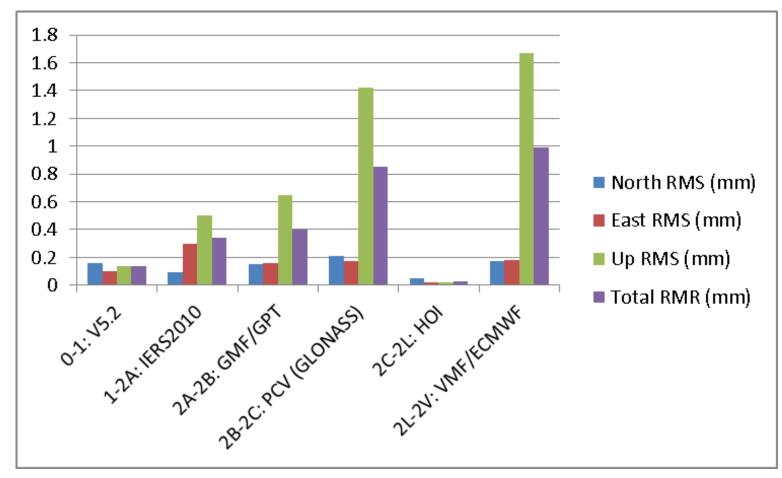

Characteristics of Various EUREF GNSS Analysis Solutions Computed at LPT (for Comparison/Validation Purposes)

Solution ID (code)	SW version	Tropo/gradients	GLO PCV	HO lono & 3 SPs	IERS conventions & other models
O ld (0)	BSW V5.0+	NMF/TILTING	No	No	IERS2000 ⁰
N ew (1)	BSW V5.2	NMF/TILTING	No	No/ZERO	IERS2000 ¹
A (2A)	BSW V5.2	NMF/TILTING	No	No	IERS2010 ²
B (2B)	BSW V5.2	GMF/GPT/CHENHER	No	No	IERS2010 ²
C (2C)	BSW V5.2	GMF/GPT/CHENHER	Yes	No	IERS2010 ²
D (2D)	BSW V5.2	GMF/GPT/CHENHER	Yes	No/ZERO	IERS2010 ²
Last (2)	BSW V5.2	GMF/GPT/CHENHER	Yes	Yes/ONE	IERS2010 ²
VMF	BSW V5.2	VMF/ECMWF/CHENHER	Yes	Yes	IERS2010 ²
COE	BSW V5.3	VMF/ECMWF/CHENHER	Yes	Yes/ONE	IERS2010 ³

⁰DE200, JGM3, IERS2000.SUB, IAU2000.NUT, old BLQ, red. GLO AR → SNGDIF bonus, MAUPRP auto
 ¹DE405, JGM3, IERS2000.SUB, IAU2000.NUT, old BLQ, red. GLO AR → HOI SPs, ISTPs
 ²DE405, EGM2008_SMALL, IERS2010XY.SUB, IAU2000R06.NUT, updated BLQ, GPS QCPB*, CMC/ATL, red. GLO AR, MAUPRP iono
 ³DE405, EGM2008_SMALL, IERS2010XY.SUB, IAU2000R06.NUT, updated BLQ, GPS QCPB, CMC/ATL, MW & full GLO AR, MAUPRP iono

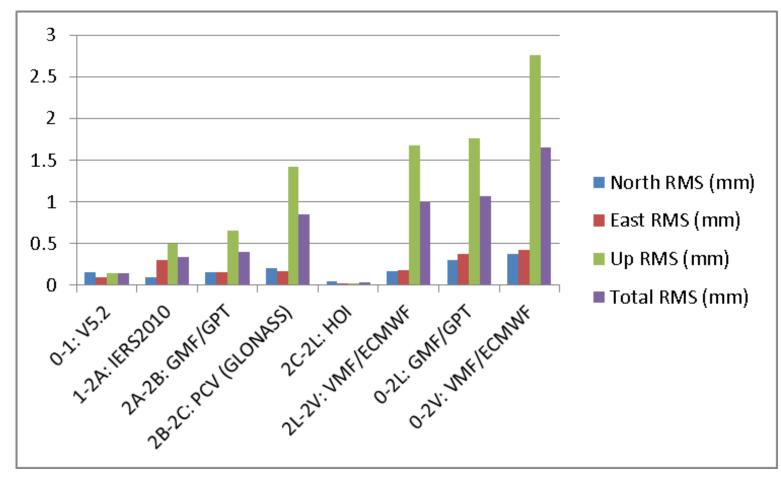
J

EUREF Subnetwork as Considered at swisstopo (LPT)

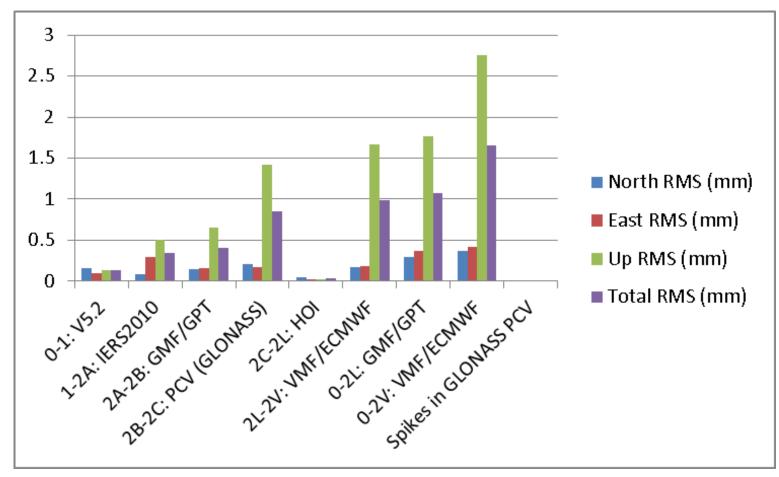


- 52 stations (from France to Estonia)
- Development of GNSS (GPS&GLONASS):
 2008: 8 stations
 2013: 42 stations (80%)
- GNSS as well as GPS-only solutions computed (GNSS solution submitted to EUREF)
- Data sample used for comparison/validation purposes: GPS week 1730 (specifically day 063 of 2013, consisting of 51 station)

Impact of SW/Model Updates/Changes as Summarized for North, East, Up, Total RMS (mm), Scale (ppm) (Based on 7-Parameter Helmert Transformations):

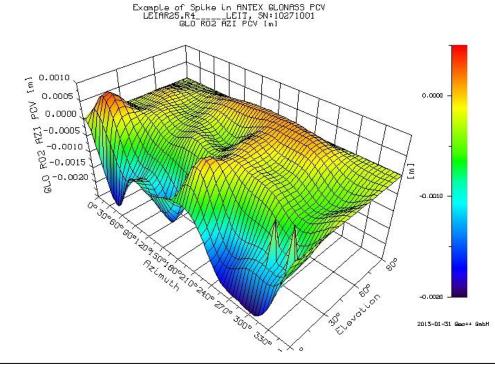

```
BSW50-BSW52 (as close as possible):
P1 O-N: 0.08 0.09 0.15 0.11 -0.00099 → P1 = Preliminary, ambiguity-float GNSS solution
F1 O-N: 0.16 0.10 0.14 0.14 -0.00098 → F1 = Final, ambiguity-fixed GNSS solution
F1A O-N: 0.08 0.09 0.12 0.10 -0.00096 \rightarrow F1A = Final, ambiguity-fixed GPS-only solution
IERS2000-IERS2010 and other minor updates:
F1 N-A: 0.09 0.30 0.50 0.34 -0.00035
Troposphere/gradients:
F1 A-B: 0.15 0.16 0.65 0.40 -0.00098
GLONASS PCV:
F1 B-C: 0.21 0.17 1.42 0.85 -0.00014
F1A B-C: 0.00 0.00 0.00 0.00 0.000
Higher-order ionosphere (deactivated at NEQ level):
F1 C-D: 0.00 0.00 0.00 0.00 0.0000
Higher-order ionosphere:
F1 D-L: 0.05 0.02 0.02 0.03 0.00013
Overall impact of all BSW52 model updates:
P1 N-L: 0.27 0.24 1.98 1.18 -0.00194
F1 N-L: 0.24 0.37 1.75 1.06 -0.00134
BSW50-BSW52 (latest models):
P1 O-L: 0.26 0.27 2.01 1.20 -0.00292
F1 O-L: 0.30 0.37 1.76 1.07 -0.00233
```

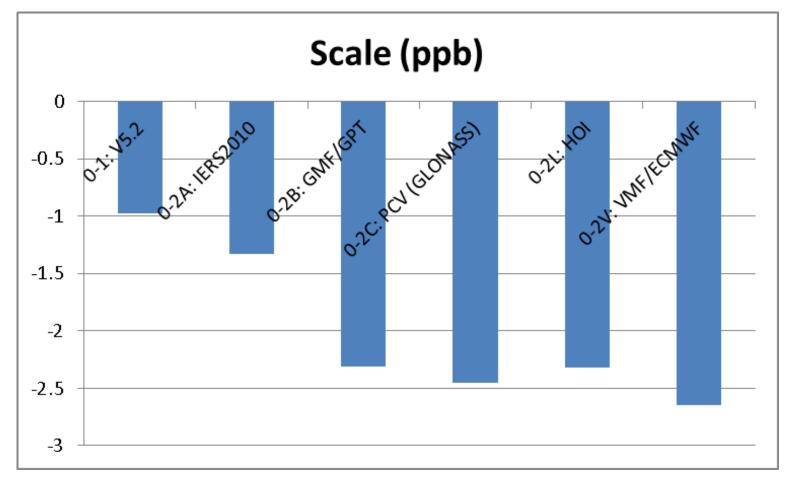
Station Coordinate RMS Differences for Various SW/Model Update Steps (1)


J

Station Coordinate RMS Differences for Various SW/Model Update Steps (2)

J


Station Coordinate RMS Differences for Various SW/Model Update Steps (3)


J

Remark on "Spikes Removed From GLONASS PCV Calibrations"

- "Spikes" removed in IGS GNSS (GLONASS) PCV model with update from IGS08_1731 to IGS08_1734 (nominally to be considered as of 31 March 2013)
- See also: <u>www.geopp.de</u> >The company >News:

Impact on Network Scale for Various SW/Model Update Steps

O

BSW50-BSW52, with Shapiro, with Hardisp: F1A O-N: 0.08 0.08 0.09 0.08 -0.00090

BSW50-BSW52, with Shapiro, without Hardisp: F1A O-N: 0.08 0.08 0.09 0.08 -0.00089

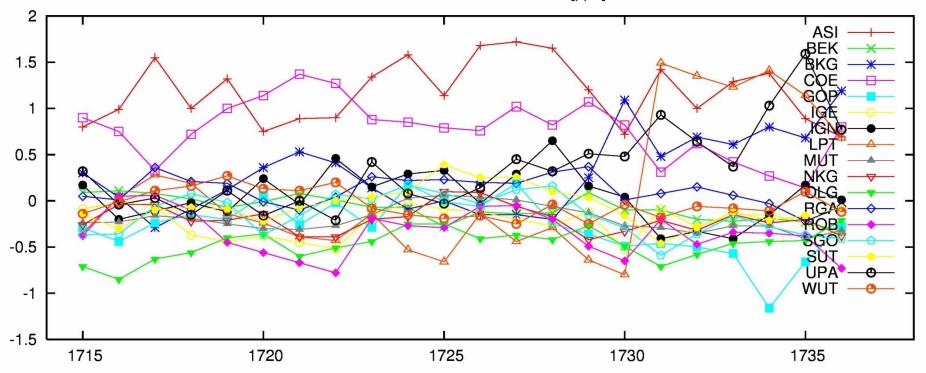
BSW50-BSW52, without Shapiro, without Hardisp: F1A O-N: 0.08 0.08 0.08 0.08 +0.00004

Many thanks to R. Dach (AIUB) for doing the corresponding test analyses (at swisstopo).

Computation of Multi-Year Solution Using ADDNEQ2 and CPU Time Consumption

- ADDNEQ2:
 - MULTI_A (PNAC's multi-year solution using ADDNEQ2):
 - CPU time reduction from 4500 to 400 sec (9% or 11x)
 - specific option to be changed: HELMERT → HLM_ALL
 - BSW52 results are consistent with BSW50 results
- GPSEST (just an issue with the Lahey compiler used at PNAC):
 - Considerably increased CPU time consumption for GPSEST
 - turned out to be in subroutines VECTRP, PRITRP, PRIEST
 - correction in subroutine TRPVEC:

REAL*8 XXX(*), ANOR(*) \rightarrow REAL*8 XXX(:), ANOR(:)


- CPU time reduction:
 - EUREF: from 8.5 to 4 min (approx. 2x)
 - AGNES: from 150 to 35 min (approx. 4-5x)
- Helpful BPE processing summary concerning CPU time consumption (see: BPE/EUREF.OUT).

Summary and Conclusions

- The impact of various model updates could be demonstrated (step by step).
- The detailed study comparing the BSW V5.0/V5.2 results revealed a few problems (e.g. RXOBV3, ATX2PCV).
- High consistency between BSW V5.0 and V5.2 results.
 - "1ppb"--finally attributed to the correction of the Shapiro effect
- Scale difference of -2.3 ppb (Shapiro, IERS2010, GMF/GPT) and station coordinate differences (up to 2 mm horizontally and 5 mm vertically) when using new BSW V5.2 options.
- Mean troposphere difference of 1.9 mm when using new BSW V5.2 options (-0.1 mm in case of options close to BSW V5.0)
- LPT contributions to EUREF since GPS week 1731 are computed using BSW V5.2.
- Other network analysis (AGNES, NRT processing) has to be switched in next weeks.
- Updated version of ATX2PCV V5.2 (successor of PHCCNV V5.0) may be expected by the end of June 2013.

Scale With Respect to EUREF Combined Solution

Scale w.r.t Combined solution [ppb]

