ITRS, ETRS89, their relationship and realization

Zuheir ALTAMIMI Laboratoire de Recherche en Géodésie Institut National de l'Information Géographique et Forestière, France E-mail: Zuheir.altamimi@ign.fr

Outline

- ITRS realization ITRF construction
- ITRF2008 Plate Motion Model
- From ITRF to Regional Reference Frames and their limitations
- ETRS89:
 - Link to ITRS
 - Its conventional realization, the ETRF2000
 - The role of the EPN for the access to the ETRS89 at the country level

ITRS Realization Current: ITRF2008

- Origin: Mean CoM over the time span of SLR observations.
 - Zero translations and rates btw SLR long-term solution and ITRF
- Scale: Mean of VLBI and SLR
 - Zero scale & rate between the mean of VLBI and SLR long-term solutions and ITRF
- Orientation: successive alignments btw ITRF solutions

ITRF Construction

ITRF2008

ITRF2008 Plate Motion Model

Inversion model:
$$\dot{X}_i = \omega_p \times X_i + \dot{T}$$

Results:

- Angular velocities for 14 plates
- Translation rate components

Table 2. Translation rate components

Nu	umber of	sites	\dot{T}_x	\dot{T}_y	\dot{T}_z
Total	EURA	NOAM		$\rm mm/a$	
206	69	44	0.41	0.22	0.41
			± 0.27	± 0.32	± 0.30

• More details in JGR paper by Altamimi et al. (2012), In Press

Impcat of the translation rate

Imneat of the translation rate

Rigid plates and deformation zones

• plate boundaries and deformation zones

From the ITRF to Regional Reference Frames

- Purpose: geo-referencing applications ($\sigma \sim cm$)
- There are three main cases :
 - 1. Station positions at a given epoch, eventually updated frequently. Ex.: North & South Americas
 - 2. Station positions & deformation model: New Zealand, Greece (?)
 - 1. Station positions & minimized velocities (ETRS89)
 - Case 1 is "easy" to implement
 - Case 2 & 3 are more sophisticated & need
 - Transformation formula (ETRS89)
 - Deformation model

Regional Reference Frames at the Country Level

- Meterialized by station coordinates of reference points at a given <u>epoch</u> (no velocities)
- Coordinates do not reflect the reality
- Need updates, but maybe constrained by the country law & user reluctance
- Coordinates are precise at a few cm level, but they are not accurate.

How to express a GNSS network in the ITRF?

- Select a reference set of ITRF/IGS stations and collect RINEX data from IGS data centers;
- Process your stations together with the selected ITRF/IGS ones:
 - Fix IGS orbits, clocks and EOPs
 - Eventually, add minimum constraints conditions on ITRF stations

$$(A^T A)^{-1} A^T (X_{ITRF} - X_{Estimated}) = 0$$

==> Solution will be expressed in the ITRFyy consistent with IGS orbits

• Propagate official ITRF station positions at the central epoch (t_c) of the observations:

$$X(t_c) = X(t_0) + \dot{X}(t_c - t_0)$$

• Compare your estimated ITRF station positions to official ITRF values and check for consistency!

Transformation parameters from ITRF2008 to past ITRF solutions

Table 4.1: Transformation parameters from ITRF2008 to past ITRFs. "ppb" refers to parts per billion (or 10^{-9}). The units for rates are understood to be "per year."

Solution	T1	T2	T3	D	R1	R2	R3	
	(mm)	(mm)	(mm)	(ppb)	(mas)	(mas)	(mas)	Epoch
ITRF2005	-2.0	-0.9	-4.7	0.94	0.00	0.00	0.00	2000.0
rates	0.3	0.0	0.0	0.00	0.00	0.00	0.00	
ITRF2000	-1.9	-1.7	-10.5	1.34	0.00	0.00	0.00	2000.0
rates	0.1	0.1	-1.8	0.08	0.00	0.00	0.00	
ITRF97	4.8	2.6	-33.2	2.92	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF96	4.8	2.6	-33.2	2.92	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF94	4.8	2.6	-33.2	2.92	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF93	-24.0	2.4	-38.6	3.41	-1.71	-1.48	-0.30	2000.0
rates	-2.8	-0.1	-2.4	0.09	-0.11	-0.19	0.07	
ITRF92	12.8	4.6	-41.2	2.21	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF91	24.8	18.6	-47.2	3.61	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF90	22.8	14.6	-63.2	3.91	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF89	27.8	38.6	-101.2	7.31	0.00	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	
ITRF88	22.8	2.6	-125.2	10.41	0.10	0.00	0.06	2000.0
rates	0.1	-0.5	-3.2	0.09	0.00	0.00	0.02	

ITRF

Transformation from an ITRF to another at epoch t_c

- Input : X (ITRFxx, epoch t_c)
- Output: X (ITRFyy, epoch t_c)
- Procedure:
 - Propagate ITRF transformation parameters from their epoch (2000.0, previous slide) to epoch t_c , for both ITRFxx & ITRFyy:

$$P(t_c) = P(2000.0) + \dot{P}(t_c - 2000.0)$$

- Compute the transformation parameters between ITRFxx and ITRFyy at epoch t_c , by subtraction;
- Transform coords using the general transformation formula :

X(ITRFyy) = X(ITRFxx) + T + D.X(ITRFxx) + R.X(ITRFxx)

ETRS89 Definition

- Coincides with ITRS at epoch 1989.0:
 - Definition at a reference epoch (1989.0)
 - The 7 parameters between ITRS and ETRS89 are zero at 1989.0
- Fixed to the stable part of the Eurasian plate
 - Co-moving with the eurasian plate: law of time evolution
 - From ITRFyy to ETRFyy: 3 non-zero rotation rates which are equal to the Eurasia angular velocity

ETRS89 Realization

- Expression in ITRF_{yy} at central epoch (t_c) of the implied observations
- Expression in ETRS89 using 14 transformation parameters some of them are zeros

Positions
$$X^{E}(t_{c}) = X^{I}_{YY}(t_{c}) + T_{YY} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times X^{I}_{YY}(t_{c}).(t_{c}-1989.0)$$

Velocities

$$\begin{pmatrix} \dot{X}_{YY}^E \\ \dot{Y}_{YY}^E \\ \dot{Z}_{YY}^E \end{pmatrix} = \begin{pmatrix} \dot{X}_{YY}^I \\ \dot{Y}_{YY}^I \\ \dot{Z}_{YY}^I \end{pmatrix} + \begin{pmatrix} 0 & -\dot{R}3_{YY} & \dot{R}2_{YY} \\ \dot{R}3_{YY} & 0 & -\dot{R}1_{YY} \\ -\dot{R}2_{YY} & \dot{R}1_{YY} & 0 \end{pmatrix} \times \begin{pmatrix} X_{YY}^I \\ Y_{YY}^I \\ Z_{YY}^I \end{pmatrix}$$

ITRFyy to ETRFyy

Transformation parameters from ITRFyy to ETRF2000

ITRF Solution	T1	T2	T3	D	R1	R2	R3
	mm	mm	mm	10^{-9}	mas	mas	mas
ITRF2008	52.1	49.3	-58.5	1.34	0.891	5.390	-8.712
Rates	0.1	0.1	-1.8	0.08	0.081	0.490	-0.792
ITRF2005	54.1	50.2	-53.8	0.40	0.891	5.390	-8.712
Rates	-0.2	0.1	-1.8	0.08	0.081	0.490	-0.792
ITRF2000	54.0	51.0	-48.0	0.00	0.891	5.390	-8.712
Rates	0.0	0.0	0.0	0.00	0.081	0.490	-0.792
ITRF97	47.3	46.7	-25.3	-1.58	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF96	47.3	46.7	-25.3	-1.58	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF94	47.3	46.7	-25.3	-1.58	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF93	76.1	46.9	-19.9	-2.07	2.601	6.870	-8.412
Rates	2.9	0.2	0.6	-0.01	0.191	0.680	-0.862
ITRF92	39.3	44.7	-17.3	-0.87	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF91	27.3	30.7	-11.3	-2.27	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF90	29.3	34.7	4.7	-2.57	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812
ITRF89	24.3	10.7	42.7	-5.97	0.891	5.390	-8.772
Rates	0.0	0.6	1.4	-0.01	0.081	0.490	-0.812

Table 5: Transformation parameters from $ITRF_{yy}$ to ETRF2000 at epoch 2000.0and their rates/year

Access to ETRS89/ETRF2000 and the Fundamental Role of the EPN

- Follow the procedure to express a GNSS network in the ITRF, but use either:
 - ITRF/IGS station coordinates OR EPN cumulative solution
- Propagate ITRFyy-to-ETRF2000 transformation parameters at the central epoch t_c:

$$P(t_c) = P(2000.0) + \dot{P}(t_c - 2000.0)$$

- Transform coordinates with propagated parameters
- Follow the guidelines for EUREF Densifications (Bruyninx et al., 201x)
- <u>Eventually</u> apply a local deformation model to propagate from epoch t_c to the epoch of past solution (not 1989.0)

Diagramme of Procedure

(Bruyninx et al., 2010)

Comments on ETRS89/ETRF2000

- A European-wide system/frame: One procedure to access the system for all European countries
- ETRF2000 adoption: harmonize the ETRS89 realization overall Europe
- Minimized horizontal velocities:
 - 1 mm/yr in central Europe ==> 1 cm over 10 years
 - Up to 2mm/yr in GIA regions (Fennoscandia)
 - ≈> 1cm/yr in deformation zones (Italy, Greece)
- Same vertical velocities in both ITRS and ETRS89
 Up to 1 cm/yr in GIA regions

Eurasia Horizontal Velocities in ETRF2000 Transformation from ITRF2008 to ETRF2000

Comments on ETRS89/ETRF2000

- A European-wide system/frame: One procedure to access the system for all European countries
- ETRF2000 adoption: harmonize the ETRS89 realization overall Europe
- Minimized horizontal velocities:
 - 1 mm/yr in central Europe ==> 1 cm over 10 years
 - Up to 2mm/yr in GIA regions (Fennoscandia)
 - ≈> 1 cm/yr in deformation zones (Italy, Greece)
- Same vertical velocities in both ITRS and ETRS89
 Up to 1 cm/yr in GIA regions

Eurasia Horizontal Velocities in ETRF2000

Comments on ETRS89/ETRF2000

- A European-wide system/frame: One procedure to access the system for all European countries
- ETRF2000 adoption: harmonize the ETRS89 realization overall Europe
- Minimized horizontal velocities:
 - 1 mm/yr in central Europe ==> 1 cm over 10 years
 - Up to 2mm/yr in GIA regions (Fennoscandia)
 - ≈> 1 cm/yr in deformation zones (Italy, Greece)
- Same vertical velocities in both ITRS and ETRS89
 Up to 1 cm/yr in GIA regions

Eurasia Vertical Velocities in ITRS/ETRS89

Conclusion

- ITRS & ETRS89 are linked by 14 transformation parameters
- ETRF2000 adoption to harmonize the ETRS89 overall Europe
 - Ensures that all European national frames are consistent at the cm level
- Eurpean Countries are encouraged to adopt ETRF2000
- Local deformation models could be applied in some deforming area (Fennoscandia, Greenland Italy, Greece), after expression in ETRS89/ ETRF2000

