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Abstract. This study outlines a new strategy for the 

optimal implementation of a Local Reference Frame 

(LRF) realization in Greece. The main concept lies 

on the application of a Helmert-type similarity 

transformation to a given velocity field that will 

satisfy a minimum kinetic energy condition with 

respect to the new optimal LRF. The initial velocity 

set could be expressed either in 3D or 2D, and it 

may refer to any global or regional reference frame 

(e.g. ITRF or ETRF). Our approach is tested over a 

GPS control network in Greece that exhibits a rather 

strong and inhomogeneous ETRF-based velocity 

field, which is significantly reduced after the 

optimal transformation scheme that is proposed 

herein. 

Keywords. Terrestrial reference frame, ETRS89, 

Hellenic area, velocity field, network kinetic 

energy. 
 

 

1 Introduction 
 

ETRS89 is a conventional terrestrial reference 

system that is used for GPS-based spatial 

positioning over the European continent (Gubler et 

al. 1992). Apart from serving the need of a uniform 

spatial reference framework for surveying and 

mapping applications in the European countries, the 

primary geodetic objective of ETRS89 is the 

definition, realization and maintenance of a stable 

3D coordinate system with minimal horizontal 

velocities, thus allowing an easier handling of time-

dependent positions in national geodetic networks.  

To a large extent, the aforementioned objective 

is achieved by ensuring that ETRS89 follows the 

Eulerian rotational motion of the Eurasian plate 

through its alignment to a pre-determined set of 

appropriate Euler Pole Parameters (EPPs). In fact, 

one of the key aspects within the ETRS89 

realization is the reduction of an ITRF-based 

velocity field to the so-called stable part of Europe, 

using the following linearized equation (Boucher 

and Altamimi 2008): 

 

   
ETRFyy ITRFyy ITRFyy
i i i= +v v Rxɺ                              (1)    

where the velocity vectors 
ITRFyy
iv  and 

ETRFyy
iv  

refer to the same point i with respect to a global 

ITRF frame and an induced ETRS89/ETRF frame, 

respectively. The term 
ITRFyy
ix  corresponds to the 

3D position vector of the respective point with 

respect to the underling ITRF frame (the epoch is, 

in principle, irrelevant), whereas Rɺ  is an 3×3 anti-

symmetric matrix that contains the Cartesian 

components of the angular velocity vector of the 

Eurasian plate with respect to the same ITRF frame. 

Note that for the actual velocity computation in a 

particular ETRF frame, the angular velocity vector 

(EPPs) of the Eurasian plate is deduced either from 

a global geophysical model such as AM0-2 or 

NNR-NUVEL-1/1A or from a geodetically derived 

velocity field over a network of high-quality ITRF 

stations within the stable part of Europe. For more 

details see the well-known memo by Boucher and 

Altamimi (2008). 

The magnitude of the ETRF-based horizontal 

velocities obtained through Eq. (1) over the central 

and northern parts of Europe does not exceed a few 

mm/yr, thus allowing ETRS89 to be used as a rather 

stable framework for geodetic positioning in these 

regions. On the other hand, at the south-eastern part 

of Europe (and particularly in Greece) the situation 

is completely different. Specifically, the horizontal 

velocities with respect to the stable part of Eurasia 

in Greece can reach up to several cm/yr (more than 

3 cm/yr at the TUC2 EPN station in Crete) 

following also a spatially inhomogeneous behavior, 

a fact that has been corroborated by several studies 

(e.g. Clarke et al. 1998, Nyst and Thatcher 2004, 

Hollenstein et al. 2008); see Fig. 1. This is largely 

caused by the unique geodynamical setting of the 

Hellenic area that directly affects the behavior of 

the ETRS89/ETRF velocity field in Greece, which 

is in fact considerably stronger than in the central 

and northern Europe when viewed from an Eurasia-

fixed reference frame. In terms of its geodynamical 

behavior, the Hellenic area seems actually to be 

divided into two major parts: northern Greece 

exhibits an apparent consistency (at the few mm/yr 

level) with the stable Eurasia, whereas the southern 

regions suffer from a clear S/W velocity trend at the 

level of several cm/yr. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 The inhomogeneous velocity field in the Hellenic 

area with respect to an Eurasian-fixed reference frame 

(after Hollenstein et al. 2008). 
 

 

Considering the previous remarks, an ETRF-

based implementation of a national TRF in Greece 

(as described, for example, in Boucher and 

Altamimi 2008) will create a strong velocity field 

over most of the country, thus canceling out one of 

the key reasons for adopting ETRS89 as a standard 

geodetic reference system by the national mapping 

agencies around Europe. The aim of this paper is to 

present an alternative optimal scheme for 

implementing a national TRF in Greece. Our 

approach is based on the use of an initial ETRF (or 

ITRF) realization over a national network consisting 

of an estimated set of coordinates and velocities at 

some reference epoch, which can be then 

rotationally transformed as to ensure the ‘weakest’ 

possible velocity field throughout the entire part of 

the country.  

 
 
2 A proposed strategy for an optimal 
LRF realization 

 

 

2.1 Mathematical formulation 
 

The main idea of the proposed scheme relies on the 

implementation of an optimized Helmert-type 

similarity transformation of a velocity field from a 

given ITRF or ETRF frame to a new local reference 

frame (LRF). The pointwise mathematical 

expression for such a velocity transformation is 

given by the linearized formula (Altamimi et al. 

2002): 

 

T
  

LRF TRF
i i i= +v v E θɺ           (2) 

 

where 
TRF
iv  and 

LRF
iv  denote the 3D velocity 

vectors of a terrestrial point i with respect to the 

initial TRF and the new LRF (to be later optimized), 

respectively. The transformation matrix iE  is 

formed by the well-known expression 

 

T

1 0 0 0

0 1 0 0

0 0 1 0

TRF TRF TRF

TRF TRF TRF

TRF TRF TRF

i i i

i i i i

i i i

x z y

y z x

z y x

 −
 

= − 
 − 

E  

 
and it is evaluated through the known coordinates of 

the particular point with respect to the initial TRF 

(the reference epoch of these coordinates is, in 

principle, irrelevant), whereas the vector θɺ  contains 

the unknown rates of the 7 similarity transformation 

parameters between the TRF and the LRF, namely 

 

 T
  x y z x y zt t t D r r r=   θ ɺɺ ɺ ɺ ɺ ɺ ɺ ɺ  

 

In the case of a spatial network of n points, the 

previous expression in Eq. (2) can be generalized in 

vector form as follows: 

 

T
  

LRF TRF= +v v E θɺ                                           (3) 

 

where the vectors 
LRF

v  and 
TRF

v  contain the 

individual velocity components of all network 

stations, and the total transformation matrix E has 

the block structure 

 

T
1

T
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n
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E

E
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The unknown transformation parameters θɺ  
shall be determined according to the following 

optimal criterion for the magnitude of the 

transformed velocities into the new frame: 

 

T
    min( ) ( )LRF LRFφ = =v v                              (4) 

 

The physical meaning of the above criterion is 

that it leads to local reference frame in which the 

total kinetic energy of the network stations becomes 

as small possible (compared to any other frame in 

the ‘neighbourhood’ of the initial TRF). The 

minimization of the above quantity is achieved by 

setting to zero its partial derivative with respect to 

the vector of the unknown transformation 

parameters, that is 

 

  
φ∂

=
∂

0
θɺ

                                                               (5) 

 



and, taking into the general equation (3), it leads to 

the optimal solution: 

 

    

T 1
  ( )

TRF−= −θ EE Evɺ                                       (6) 

 

Finally, the new optimized velocities with 

respect to the LRF can be now computed from the 

forward formula: 

 

   

T T 1
 ( )( )LRF TRF−= −v E EE E vI                       (7) 

 
 
2.2 Remarks 
 

Our optimization procedure creates an LRF that 

differs from the initial TRF in terms of its temporal 

evolution law. The latter is actually dictated by the 

norm minimization of the velocity field v
LRF

 that is 

obtained from an existing velocity field v
TRF 

under a 

Helmert-type similarity transformation. 

A critical issue for the implementation of this 

procedure is the choice of the transformation 

parameters θɺ  that should participate within the 

optimization algorithm. In fact, a scale-rate 

transformation parameter should not be used, 

otherwise an artificial distortion would be 

introduced into the new LRF. Moreover, in small 

geographical areas (as the case of Greece) the use of 

shift-rate transformation parameters should also be 

avoided due to their high correlation with the three 

rotation-rate parameters. Thus, a rotational-only 

form of the general transformation model (2) or (3) 

seems a more appropriate choice for the 

implementation of the reference frame optimization 

over the Hellenic area. Note that, in this case, our 

strategy becomes equivalent to the determination of 

an optimal Euler rotation pole that will give the 

weakest possible residual velocity field throughout 

the working area. 

The optimal LRF could be practically realized 

through an operational scheme consisting of the 

following basic steps. First, a conventional  

reference epoch t0 needs to be selected, at which the 

TRF frame and the optimal LRF frame are supposed 

to coincide, i.e. 

 

o o( )  ( )
LRF TRF
i it t≡x x                                          (8) 

 

At an arbitrary epoch t the position vector with 

respect to the LRF is 

 

  o o( )  ( )  ( )
LRF LRF LRF
i i it t t t= + −x x v         (9)    

 

If we take into account the relationship between 

the LRF and TRF velocities according to Eq. (7) 

and also the previous condition stated in Eq. (8), we 

have that 

    

T T 1
o( ) ( ) ( ) ( )

LRF TRF TRF
i i ii i i it t t t

−= + −x x E E E E v  

     (10)    

Based on the last formula, the realization of the 

optimal LRF can be fully achieved, at any time 

epoch t, in terms of position/velocity information 

that is available from the initial ‘working frame’ 

(ITRF or ETRF based) over the area of interest. 

 

 

2.3 Exclusive use of 2D (horizontal) 
velocities 

 

Alternatively, our optimization procedure could be 

also implemented in a 2D (horizontal-only) version 

by ignoring the vertical velocity component in the 

TRF frame. This may be approximately achieved if 

we multiply both sides of Eq. (2) with a suitable 

matrix of the following structure (Soler and 

Marshall 2002): 

 

sin cos sin sin cos

sin cos 0

i i i i i

i

i i

ϕ λ ϕ λ ϕ

λ λ

− −

−
=
 
 
 

C            (11) 

 

which converts the initial 3D Cartesian geocentric 

velocities to their 2D horizontal counterparts (with 

respect to the local northing and easting directions 

at point i). In fact, the Helmert-type linearized 

similarity transformation for the horizontal 

velocities can be written in the general form: 

 

T
  

LRF TRF
i i i= +v v E θɺɶɶ ɶ                                         (12) 

 

where 

 

 

 
northing easting

TRF TRF TRF
i

i
v v=  
 vɶ   and  

 

 

 
northing easting

LRF LRF LRF
i

i
v v=  
 vɶ  

 

correspond to the horizontal velocity vectors with 

respect to the initial TRF and the optimal LRF, 

while the Helmert transformation matrix is now 

given as  

T T
i ii=E C Eɶ . The LRF optimization 

procedure of the total horizontal velocity vector 

LRF
vɶ  over a given network can then follow along 

the same steps that were described in Sect. 2.1. 

 
 

3. Numerical results     
 
 

3.1 Test network 
 

The numerical evaluation of our proposed strategy 

has been performed in a nationwide GPS control 



network in Greece (see Fig. 2). The test network 

consists of 16 permanent reference stations: 11 of 

them are located within Greece, including 4 EPN 

Hellenic stations (AUTH, DUTH, NOA1, TUC2) 

and 7 additional stations that are part of the 

NOANET GPS network which is maintained by the 

Astronomical Observatory of Athens, while the rest 

5 reference stations are distributed in Central 

Europe and they belong to the European Permanent 

Network (BRUS, GRAZ, PTBB, WTZR, ZIMM). 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 The GPS test network used in our study. Red color: 

Central Europe EPN stations. Blue color: Hellenic 

stations. 

 

An initial velocity set (v
TRF

) was estimated at the 

11 Hellenic stations from GPS data over a three-

year period (2007-2010) using the Bernese software 

package ver. 5 (Dach et al. 2007). The reference 

frame was fixed through tight constraints at the 5 

EPN stations in Central Europe. Initially, station 

coordinates and velocities were computed with 

respect to ITRF 2005 and then were transformed to 

ETRF 2000 according to the guidelines described in 

Boucher and Altamimi (2008). The individual 

horizontal ad vertical components of the final ETRF 

2000 velocity estimates are given in Table 1. Note 

that the rms error of these values is at the 0.5 mm/yr 

level. 

The estimated ETRF 2000 horizontal velocities 

at the 11 Hellenic GPS reference stations exhibit an 

inhomogeneous behavior over the geographical area 

of Greece (see Table 1). Specifically, test stations 

that are located in the northern mainland part 

(AUT1, DUTH and KASI) show horizontal 

velocities smaller than 1 cm/yr. On the other hand, 

GPS stations located in the southern part (NOA1 

and RLSO), Crete (TUC2) and northern Aegean 

region (LEMN and PRKV) show a rather different 

pattern, with larger velocity magnitudes that reach 

up to 3 cm/yr (see NOA1 and TUC2 stations). 

Table 1.  ETRF 2000 topocentric velocities (vN, vE, vU: 

north, east and up velocity components, vhor: total 

horizontal velocity) at the 11 Hellenic stations. Units in 

mm/yr. 

 
Station vN vE vU vhor 

AUT1 -6.4 0.5 -3.2 6.4 

DUTH -2.1 1.5 1.3 2.6 

KASI 0.9 -3.4 -4.2 3.5 

KLOK -7.4 -4.2 -3.6 8.5 

LEMN -12.9 -16.5 3.4 20.9 

NOA1 -25.1 -17.1 1.1 30.4 

PONT -5.2 -4.2 -3.3 6.7 

PRKV -12.9 -18.9 -0.3 22.9 

RLSO -18.5 -16.3 4.8 24.7 

TUC2 -24.4 -15.7 -0.9 29.0 

VLSM -9.1 -6.4 -1.7 11.1 

 

 

3.2 Optimal LRF velocity field 
 

The results obtained from the optimized 

transformation of the ETRF 2000 velocities into the 

new LRF are shown in Table 2. Note that the 

horizontal components of the transformed velocities 

v
LRF

 which were obtained from Eq. (7) are only 

listed in this table. It is emphasized that the chosen 

transformation parameters that were used in the 

LRF optimization included only the 3 rotation rates, 

in accordance with the rationale that was discussed 

in Sect. 2.2. 

 
Table 2.  Transformed horizontal velocities in the optimal 

LRF at the 11 Hellenic stations. Units in mm/yr. 

 
Station vN vE vhor 

AUT1 -2.1 -7.9 8.2 

DUTH -12.9 -0.1 12.9 

KASI 1.7 7.7 7.9 

KLOK -4.7 -1.6 5.0 

LEMN -6.1 -8.2 10.2 

NOA1 -9.8 9.0 13.3 

PONT -4.1 4.7 6.2 

PRKV 8.6 -5.9 10.4 

RLSO -0.9 -4.6 4.7 

TUC2 4.0 5.9 7.1 

VLSM -4.3 0.9 4.4 

 

Comparing the values in Tables 1 and 2, we see 

a reduction of the mean horizontal velocity of about 

6 mm/yr (from 15 mm/yr in ETRF 2000 drops to 9 

mm/yr in LRF). Moreover, the magnitude 

dispersion of the horizontal velocity vectors shows 

also a significant reduction, going from σ = 10.5 

mm/yr (ETRF 2000) down to σ = 3.4 mm/yr (LRF). 

 

 

3.3 Optimal LRF using 2D-only velocities 
 

In this case, the implementation of the optimal LRF 

is based on the minimization of the 2D (horizontal) 

transformed velocities, according to the procedure 

that was described earlier in Sect .2.3. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Horizontal velocities at the 11 Hellenic stations 

with respect to ETRF 2000 (green color) and the optimal 

LRF (red color) in the case of the 3D optimization 

scenario. 

 

Compared to the results from the 3D 

optimization scheme that were given in the previous 

section (see Table 2), the results from the 2D-only 

optimization (see Table 3) show better homogeneity 

in the orientation of the horizontal velocity vectors 

with respect to the new LRF frame. This is further 

illustrated in Figs. 3 and 4 where the horizontal 

components of v
LRF

 from each optimization scenario 

are plotted together with the initial ETRF 2000 

horizontal velocity vectors. 

 
Table 3.  Horizontal velocities at the 11 Hellenic stations 

with respect to the new LRF (2D-only optimization). 

Units in mm/yr. 

 
station vN vE vhor 

AUT1 5.1 5.7 7.6 

DUTH 12.9 5.6 14.1 

KASI 6.7 3.5 7.6 

KLOK 2.3 3.3 4.0 

LEMN 2.5 -9.3 9.6 

NOA1 -12.1 -5.6 13.3 

PONT 1.8 5.6 5.9 

PRKV 4.5 -9.9 10.9 

RLSO -9.8 -5.1 11.0 

TUC2 -11 2 11.2 

VLSM -2.1 4.4 4.9 

 

The estimated transformation parameters 

between the initial TRF (ETRF 2000) and the new 

LRF, for each one of the optimization scenarios, are 

given in Table 4. It is seen that the three rotation 

rates between the two frames are practically the 

same in both cases. This is actually an indication of 

the fact that the major part of the GPS-derived 

velocity field in Greece lies on its horizontal 

component, and thus the vertical velocity values do 

not affect the estimated transformation parameters 

θɺ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Horizontal velocities at the 11 Hellenic stations 

with respect to ETRF 2000 (green color) and the optimal 

LRF (red color), in the case of the 2D optimization 

scenario. Note that the scale of the velocity vectors is the 

same as in Fig. 3. 

 

Finally, the statistics of the horizontal velocity 

vectors with respect to (i) the initial TRF used in 

our study (ETRF 2000), (ii) the new LRF according 

to the 3D optimization scenario, and (iii) the new 

LRF according to the 2D optimization scenario, are 

given in Table 5. These values show that our 

proposed strategy brings a significant reduction on 

the average magnitude and dispersion of the 

horizontal velocity field over the Hellenic area, with 

the 2D optimization scheme performing slightly 

better than the 3D optimization scheme. 

 
Table 4.  Estimated rotation-rate parameters between 

ETRF 2000 and the new LRF for each velocity 

optimization scenario. Units in mas/yr. 

 

Rotation rate 
using 3D velocity 

optimization 

using 2D velocity 

optimization 

x
rɺ  -3.264 -3.265 

y
rɺ  -0.982 -0.983 

z
rɺ  -3.101 -3.103 

 
Table 5. Statistics of the horizontal velocities in the test 

network with respect to the three different reference 

frames. Units in mm/yr. 

 
Reference Frame mean std max min 

ETRF 2000 15.2 10.5 30.4 2.6 

Optimal LRF (using 2D velocities) 8.2 3.2 13.3 4.4 

Optimal LRF (using 3D velocities) 9.1 3.4 14.1 4.0 

 
 
4 Conclusions 
 

An optimal strategy for the realization of a local 

reference frame (e.g. over a particular country) has 



been presented in this paper. The rationale of the 

proposed methodology is based on the minimization 

of the average magnitude of the LRF velocity field, 

a property that can be quite useful for the 

maintenance of national geodetic networks (and the 

dissemination of their up-to-date positional 

information to the users) in areas with strong and 

inhomogeneous geodynamical behavior such as 

Greece. The numerical results of our tests over most 

of the Hellenic area indicated that the horizontal 

velocity field in the optimized LRF will not exceed, 

on average, the 1 cm/yr level, and it will be 

significantly ‘weaker’ than the ETRF 2000 velocity 

field in terms of its associated rms value (see Table 

5). Obviously, additional tests in a denser national 

GPS network are required in order to study in more 

detail the feasibility of our approach and its realistic 

performance in terms of the behavior of the 

transformed velocity vector (v
LRF

). 
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