

EUREF National Report of Germany 2011

C.-H. Jahn², J. Ihde¹, G. Liebsch¹, B. Richter¹, M. Sacher¹, W. Söhne¹, H. Habrich¹, G. Weber¹

¹ Bundesamt für Kartographie und Geodäsie, BKG ²Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, AdV (Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany)

EUREF Symposium 2011

Modernization of the German height reference frame DHHN 2011

Stand April 2010

Linien Netzerneuerung DHHN

- restliche Linien des DHHN92

GNSS-Station
GNSS+Absolutschwere

The Project

2006

- Decision about instructions for levellings, GNSS observations and absolute gravity measurements
- Start of precise levellings

2008

 GNSS campaign including 250 field stations (GNSS/levelling stations) and additional 250 reference stations

2009 - 2010

 Absolute gravity measurements at 100 GNSS/levelling stations

January 2011

 Current extent of levellings 21 000 km of about 27 000 km

DHHN 2006-2011 - Modernization of the 1. Order leveling network

Progress of measurements in the DHHN

- 14 000 km leveling originally planned
- Project was extended to 27 000 km
- 23 000 km completely observed
- Finishing of the measurements 2012
- 250 GNSS stations
- 100 absolute gravity stations

German Combined Quasigeoid 2005/2010

Requirements on the AdV Quasigeoid:

- Fitting the reference systems utilized in Germany (normal heights in the DHHN92 and ellipsoidal coordinates in the ETRS89)
- Usable for height determination by means of SAPOS (SAPOS diagnosis adjustment)
- Computation of normal heights without additional correction areas
- Improvements in the mountain regions as compared with the previous SNG01 version
- Joint solution by BKG and IfE (two different program systems and model approaches, quality assurance)

Data sets for geoid modelling

<u>Germany</u> DGM – D-25 25 m x 25 m <u>Europe</u> Euro DEM 50 m x 50 m <u>Sea areas</u> GEBCO

900 GPS/levelling points (at present DHHN 1992, ETRS89/2000)

600 000 point gravity anomalies (GRS80)

600 000 point gravity anomalies airborne gravity data: BalGrace,NorthGrace, AlpinAero

GNSS points DHHN

Difference GNSS/levelling DHHN to GCG05

Comparison of the gravity field models of the GOCE time wise approach with the GCG05

The short-wave (high-frequency) geoid variations were filtered out with a Gaussian filter with filter width of 400 km.

- The Geodetic Observatory Wettzell of the BKG is a principal cornerstone for the services of the International Association for Geodesy (IAG) and therefore also for the global, European and German reference systems for position, height and gravity.
- Contributions to IVS, IGS, ILRS, IERS, IGFS
- Development of IVS2010 specification Twin Radio Telescope
- Together with the Forschungseinrichtung Satellitengeodäsie (Satellite Geodesy Research Facility) of the Technical University München, this observatory has operated for more than 30 years.

Realisation of IVS2010 specification Twin Radio Telescope

