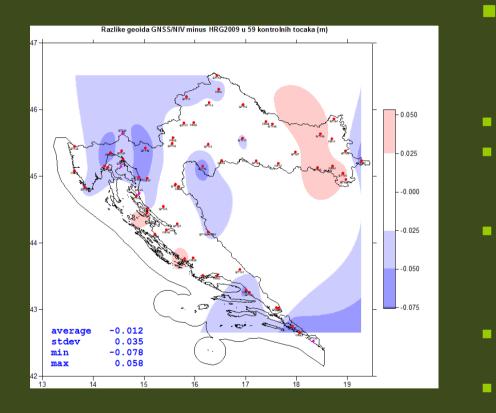
UNIVERSITY OF ZAGREB - Faculty of Geodesy

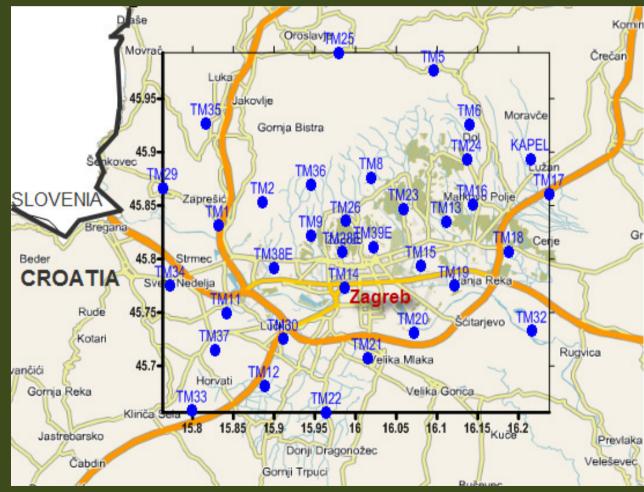
Croatia


Local applicability of heights obtained by geoid model

Olga Bjelotomic, dipl.ing Danko Markovinovic, PhD Tomislav Basic, PhD

Aim of this study

- To test mutual correspondance between measured orthometric heights and the ones obtained from a New Croatian geoid model on the area of the city Zagreb,
- determine accuracy and useness of geoid model heights directly on the field regarding new national vertical datum

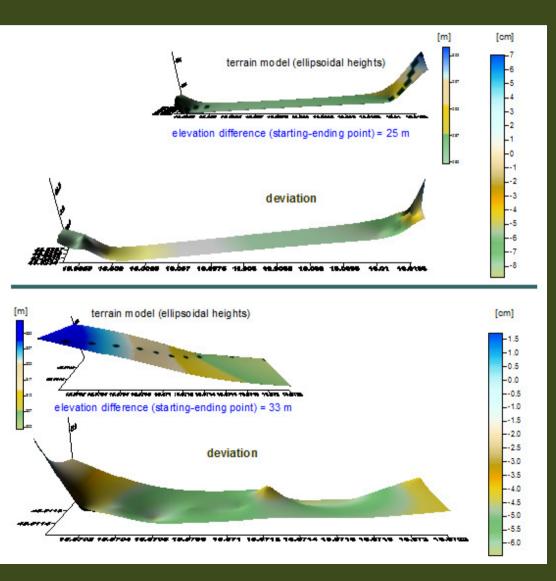

New Croatian geoid model HRG2009

- derived from the Earth's gravity field data used:
 - point free air anomalies (over 30000),
 - undulations aeoid discrete obtained bv GPS/leveling on the mainland (495) and by satellite altimetry in the Adriatic Sea (400),
 - long- and medium-wave field structures taken from the latest detailed global geopotential model EGM2008 (to the maximum degree and order of development 2160),
- high frequencies field structures modeled with the help of 3"x3" Shuttle Radar DEM's
 - with implementation of least squares collocation calculation technique.

First part of a study: Fundamental Network of Zagreb

25 points

First part of a study: Fundamental Network of Zagreb


25 points

				Diaše		K	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	ETRS'89			ORTHOMETRIC HEIGHTS [m]		GEOID UNDULATION [mg		difference	
Point number	φ	λ	h	leveling	calculating from HRG2009 geoid model	N leveled	N HRG2009	H _{orth} - H HRG2009	residuals [m]
TM1	45°.49'51".3022	15°.49'35".2926	325.862	280.1855	280.1495	45.6765	45.7125	0.0360	0.0182
TM2	45°.51'10".0969	15°.52'52".7293	518.571	472.8400	472.7489	45.7310	45.8221	0.0911	0.0733
TM5	45°.58'33".3847	16°.05'26".0732	478.278	432.4765	432.4893	45.8015	45.7887	-0.0128	-0.0306
TM6	45°.55'32".5659	16°.08'07".0621	359.109	313.4466	313.4469	45.6624	45.6621	-0.0003	-0.0181
TM8	45°.52'32".9702	16°.00'53".6168	280.589	234.8092	234.7944	45.7798	45.7946	0.0148	-0.0030
TM9	45°.49'17".7431	15°.56'26".4957	237.556	191.9299	191.8934	45.6261	45.6626	0.0365	0.0187
TM11	45°.44'56".1884	15°.50'10".9073	178.535	132.9797	132.9705	45.5553	45.5645	0.0092	-0.0087
TM12	45°.40'51".1028	15°.52'59".4884	180.075	134.5948	134.5820	45.4802	45.4930	0.0128	-0.0051
TM13	45°.50'05".4461	16°.06'23".5201	167.801	122.3435	122.3350	45.4575	45.4660	0.0085	-0.0093
TM16	45°.51'01".0558	16°.08'19".6541	187.544	142.0921	142.0939	45.4519	45.4501	-0.0018	-0.0196
TM17	45°.51'37".2546	16°.13'58".7495	161.778	116.4553	116.4656	45.3227	45.3124	-0.0103	-0.0282
TM18	45°.48'24".5744	16°.10'59".6267	149.869	104.5508	104.5595	45.3182	45.3095	-0.0087	-0.0265
TM19	45°.46'27''.9453	16°.06'57".2099	152.939	107.5780	107.5894	45.3610	45.3496	-0.0114	-0.0293
TM20	45°.43'50".3816	16°.03'58".5619	152.002	106.6322	106.6412	45.3698	45.3608	-0.0090	-0.0268
TM22	45°.39'22".3975	15°.57'34".5072	231.196	185.7438	185.7211	45.4522	45.4749	0.0227	0.0049
TM23	45°.50'47".5913	16°.03'15".7598	191.739	146.1702	146.1551	45.5688	45.5839	0.0151	-0.0027
TM24	45°.53'33".7054	16°.07'54".0291	204.839	159.2615	159.2619	45.5775	45.5771	-0.0004	-0.0183
TM25	45°.59'34".3483	15°.58'30".9901	327.446	281.7359	281.6828	45.7101	45.7632	0.0531	0.0353
TM26	45°.50'06".2211	15°.59'00".3397	253.804	208.1517	208.1389	45.6523	45.6651	0.0128	-0.0050
TM29	45°.51'58".3236	15°.45'30".6207	179.559	133.8278	133.8159	45.7312	45.7431	0.0119	-0.0059
TM30	45°.43'28".9101	15°.54'23".4561	168.834	123.3404	123.3367	45.4936	45.4973	0.0037	-0.0142
TM33	45°.39'28''.7595	15°.47'41".0735	196.816	151.3684	151.2970	45.4476	45.5190	0.0714	0.0536
TM34	45°.46'28".46	15°.46'05".2401	294.228	248.5823	248.5356	45.6457	45.6924	0.0467	0.0289
TM35	45°.55'35".5151	15°.48'42''.6073	245.6	199.8756	199.8392	45.7244	45.7608	0.0364	0.0186

Second part of a study: particular mountainly rough area

- <u>2 leveled trains</u>: 800 and 1200 meters of lenght
- <u>30 meters of height</u> <u>difference</u> between start and end point

	deviation [cm]			
min	-6.45			
max	1.73			
average	0.00			
st.dev.	2.32			

Conclusion

- Results have shown very good accurracy and adaptability of new geoid model *HRG2009* to local changes of relief, observed in detail on a wide area of the city of Zagreb. Its average deviation regard to terrain is around 2 centimeters,
- (?) Stays questionable should terrain defined with leveled orthometric heights be the reference surface because of uncertainty and often poor conditions of benchmarks
- Local adaptability proved to be adequately accurate even in mountanious area with large slopes (tested up to 30 meters in height difference) on the border areas of the city. In this conditions, orthometric heights obtained from a geoid model still reserves absolute provided accuracy and can be used for purposes of land registery because required register accuracy is smaller then accuracy of *HRG2009*.
- It is useful in the precise height definition using modern GNSS tecnology where is more efficient, economic and faster method then leveling but with the same, if not even better, accuracy and exactness.
- New Croatian geoid model *HRG2009* proved to be reliable representation of relief in local appliance, and significant contribution to local engineering tasks.

Conclusion

Results have shown very good accurracy and adaptability of new geoid model HRG2009 to local changes of relief, observed in detail on a wide area of the city of Zagreb. Its average deviation regard to terrain is around 2 centimeters,

(9) Ctove avertionable about tarrain defined with lovaled arthomatric baights be the

Thank you for attention!

provided accuracy and can be used for purposes of land registery because required register accuracy is smaller then accuracy of *HRG2009*.

- It is useful in the precise height definition using modern GNSS tecnology where is more efficient, economic and faster method then leveling but with the same, if not even better, accuracy and exactness.
- New Croatian geoid model HRG2009 proved to be reliable representation of relief in local appliance, and significant contribution to local engineering tasks.