

National Report of Finland

Reported by P. Häkli Finnish Geodetic Institute

Status of ETRS89 and EVRS in Finland

ETRS89: EUREF-FIN introduced already a decade ago

 Several governmental authorities already changed to EUREF-FIN

 But only recently municipalities started to change to EUREF-FIN, this work is still underway

EVRS: N2000 introduced in 2007

Implementation at local level is still in the beginning (only some municipalities changed so far)

- However, seems like several authorities will change to N2000 due to the fact that the old systems are deformed because of postglacial rebound
- Transformation from previous height systems to N2000 implemented as triangle-wise transformation by the NLS of Finland (Figure: N60→N2000)

Some activities in 2009

- FinnRef, permanent GPS network of the FGI operating as usual
 - Monitoring of the stations independently from GNSS (tacheometry and levelling) continued with centring measurements at five stations (3 EPN stations)
- VLBI: 6 campaigns in 2009
- SLR: under construction
- National standards laboratory:
 - Acceleration of free fall:
 - Key comparison of absolute gravimeters (ICAG-2009) at the BIPM
 - Length:
 - European Metrology Research Programme (EMRP) continued
 - EDM instruments: several calibrations and scale transfers
 - Levelling instruments: 27 rod and 17 system calibrations

Renovation of the First Order Gravity Net (FOGN) 21° 24° 27° 30°

- 50 stations
- First measured in 1962-63 and checked in 1988
- Revision of the FOGN was started in 2009
- Measurements in cooperation with the Institute of Geodesy and Cartography (IGiK, Warsaw, Poland) using the A10-020 of the IGiK
 - In 2009 altogether 20 sites were occupied (Figure)
 - In addition 10 comparisons at 5 sites measured with the FG5-221 of the FGI were performed
- The work continues in 2010

Metsähovi local ties

- VLBI

- Measurements with:
 - Precision tacheometry
 - GPS measurements
 (antennas attached to the VLBI telescope)
 - Precise levelling
- New mathematical model
- In 2009 focus on GPS measurements
- Simutaneous (kinematic)
 GNSS measurements during four geodetic VLBI campaigns
- millimeter precision achieved with kinematic GPS

$$K(\alpha, a) = \cos \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos \alpha) \begin{pmatrix} xx & xy & xz \\ xy & yy & yz \\ xz & yz & zz \end{pmatrix} + \sin \alpha \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

GPS metrology

Goal: to bring traceable scale (w.r.t. the definition of the metre) to GPS solutions at short distances (e.g. local ties)

How:

- GPS + mekometer measurements
- Mekometer (calibrated under the National standards laboratory) results considered as true values (with well-defined and small uncertainties)
- Testing of different GPS processing strategies, antenna tables, elevation angles, etc.

- Individual antenna calibration is required for the best accuracy by means of the best agreement with traceable EDM results.
- L1 only gives the best agreement on short baselines (since small biases in the PCO/PCV values are multiplied when linear combinations are used)

Other studies

- Accuracy / quality of network RTK (VRS)
 - Network RTK one of the main ways to "realise" ETRS89 in practise
 - 10-month time series of daily solutions of virtual data (zero-baseline) → longterm quality and systematic errors

Results in national ETRS89 (EUREF-FIN)

Other studies

Accuracy / quality of network RTK (VRS)

Network RTK one of the main ways to "realise" ETRS89 in practise

■ 10-month time series of daily solutions of virtual data (zero-baseline) → longterm quality and systematic errors

Results in national ETRS89 (EUREF-FIN) 66.

Accuracy: up component -35...+20mm

Mainly caused by deformed RF due to postglacial rebound (time span ~10 years)

Transformation evaluations from ITRFyy to national ETRS89 realization

Tests with velocity models

