





# Do we need a conventional transformation model for vertical reference frames?

#### C. Kotsakis

Department of Geodesy and Surveying School of Engineering Aristotle University of Thessaloniki, Greece



#### Introduction

#### The basic concept...



or



How much two different realizations of the same or different vertical reference systems differ from each other?



#### Introduction

Conventional comparison of **3D spatial TRFs** (linearized form of similarity transformation)

$$\begin{bmatrix} x' - x \\ y' - y \\ z' - z \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} \delta s & \varepsilon_z & -\varepsilon_y \\ -\varepsilon_z & \delta s & \varepsilon_x \\ \varepsilon_y & -\varepsilon_x & \delta s \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Conventional comparison of **1D spatial VRFs** for physically meaningful heights

$$H'-H = f(H, datum\ perturbation\ parameters)$$





### Common height transformations

 Corrector surfaces for GPS-aided leveling within a local vertical datum

$$h - N - H^{LVD} = \mathbf{a}^T \mathbf{x} + s + v$$

 Estimation of Earth's mean equatorial radius and CoM from heterogeneous height data

$$N(h, H) - N(C_{nm}, S_{nm}, \Delta g) = f(\delta a, \delta f, t_x, t_y, t_z)$$

Other auxiliary transformations

 (e.g. change of tidal system, normal-to-ortho height conversion, reduction due to modeled geodynamic effects, etc.)



#### However...

- A conventional transformation model for different VRFs is **not** presently in use
- It should employ specific parameters to quantify the (actual + apparent) inconsistencies in the realization of 1D vertical reference systems
- Why is it needed?



basically, for the same reasons that the conventional 3D similarity transformation is useful in spatial TRF studies (more details to follow)



#### Datum perturbation parameters

|          | $TRF \to TRF'$                                        | VRF → VRF'       |
|----------|-------------------------------------------------------|------------------|
| Shift    | $t_x, t_y, t_z$                                       | $\delta W_o$     |
| Rotation | $\mathcal{E}_{x},  \mathcal{E}_{y},  \mathcal{E}_{z}$ |                  |
| Scale    | $\delta s$                                            | $\delta s^{(*)}$ |

□ The TRF scale change factor is not equivalent with the VRF scale change factor!



### Forward effect of $\delta W_o$

|                    | VRF              | VRF'                                                                                                                                    |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Zero-height level  | $W(\cdot) = W_o$ | $W(\cdot) = W_o + \delta W_o$                                                                                                           |
| Geopot. number     | $c(P_i)$         | $c(P_i) + \delta W_o$                                                                                                                   |
| Orthometric height | $H(P_i)$         | $H(P_i) + \frac{\delta W_o}{g_i} - \frac{1}{2} \frac{\partial g}{\partial H} \frac{\delta W_o^2}{g_i^3} + \dots$                        |
| Normal height      | $	ilde{H}(P_i)$  | $\tilde{H}(P_i) + \frac{\delta W_o}{\gamma_i} - \frac{1}{2} \frac{\partial \gamma}{\partial h} \frac{\delta W_o^2}{\gamma_i^3} + \dots$ |

Orthometric and normal heights are affected in a nonlinear and spatially inhomogeneous way by  $\delta W_o$ 



### Forward effect of $\delta W_o$

|                    | VRF              | VRF'                                                                                                                                    |  |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Zero-height level  | $W(\cdot) = W_o$ | $W(\cdot) = W_o + \delta W_o$                                                                                                           |  |
| Geopot. number     | $c(P_i)$         | $c(P_i) + \delta W_o$                                                                                                                   |  |
| Orthometric height | $H(P_i)$         | $H(P_i) + \frac{\delta W_o}{g_i} - \frac{1}{2} \frac{\partial g}{\partial H} \frac{\delta W_o^2}{g_i^3} + \dots$                        |  |
| Normal height      | $	ilde{H}(P_i)$  | $\tilde{H}(P_i) + \frac{\delta W_o}{\gamma_i} - \frac{1}{2} \frac{\partial \gamma}{\partial h} \frac{\delta W_o^2}{\gamma_i^3} + \dots$ |  |

The contribution of the second (and higher) order terms is **negligible** (< 1 mm) even for  $\delta W_o$  up to 100 m<sup>2</sup> s<sup>-2</sup>



### Forward effect of $\delta W_o$

|                    | VRF              | VRF'                                                                                                                                    |  |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Zero-height level  | $W(\cdot) = W_o$ | $W(\cdot) = W_o + \delta W_o$                                                                                                           |  |
| Geopot. number     | $c(P_i)$         | $c(P_i) + \delta W_o$                                                                                                                   |  |
| Orthometric height | $H(P_i)$         | $H(P_i) + \frac{\delta W_o}{g_i} - \frac{1}{2} \frac{\partial g}{\partial H} \frac{\delta W_o^2}{g_i^3} + \dots$                        |  |
| Normal height      | $	ilde{H}(P_i)$  | $\tilde{H}(P_i) + \frac{\delta W_o}{\gamma_i} - \frac{1}{2} \frac{\partial \gamma}{\partial h} \frac{\delta W_o^2}{\gamma_i^3} + \dots$ |  |

Replacing  $g_i$  by  $\gamma_i$  causes a **negligible error** (< 1 mm) in the transformed orthometric height when  $|\delta W_o|$  < 20 m<sup>2</sup> s<sup>-2</sup>, even for  $\Delta g = g_i - \gamma_i = 500$  mgal



### Conventional modeling

#### Rigorous form (for geopotential numbers)

$$c'(P_i) = c(P_i) + \delta W_o$$

Semi-rigorous form (for normal heights)

$$\tilde{H}'(P_i) = \tilde{H}(P_i) + \frac{\delta W_o}{\gamma_i}$$

#### Approximate form (for orthometric heights)

- "small  $\delta W_o$  approximation"
- $_{\Box}$  consistent at the mm-level for  $|\delta W_{o}| < 20 \text{ m}^2 \text{ s}^{-2}$

$$H'(P_i) = H(P_i) + \frac{\delta W_o}{\gamma_i}$$



#### Forward effect of $\delta s$

|                                | VRF                                                       | VRF'                                                                  |
|--------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| Zero-height level              | $W(\cdot) = W_o$                                          | $W(\cdot) = W_o$                                                      |
| Geopotential number difference | $\Delta c_{ij} = c(P_j) - c(P_i)$                         | $\Delta c'_{ij} = (1 + \delta s) \cdot \Delta c_{ij}$                 |
| Orthometric height difference  | $\Delta H_{ij} = H(P_j) - H(P_i)$                         | $\Delta H'_{ij} = (1 + \delta s) \cdot \Delta H_{ij}$                 |
| Normal height difference       | $\Delta \tilde{H}_{ij} = \tilde{H}(P_j) - \tilde{H}(P_i)$ | $\Delta \tilde{H}'_{ij} = (1 + \delta s) \cdot \Delta \tilde{H}_{ij}$ |

Uniform **scale change** along a certain spatial direction that is used for physical height determination

(\*) with respect to a fixed reference surface



### Conventional modeling

$$c'(P_i) = c(P_i) + \delta s \cdot c(P_i)$$
 Geopotential numbers

$$H'(P_i) = H(P_i) + \delta s \cdot H(P_i)$$
 Orthometric heights

$$\tilde{H}'(P_i) = \tilde{H}(P_i) + \delta s \cdot \tilde{H}(P_i)$$
 Normal heights

- Zero-height points are preserved
- $\Box$  The scale change factor ( $\delta s$ ) is not identical among the various height types!
- A scale factor is an ideal tool to describe (the linear part of) topographically-correlated discrepancies among different VRFs



#### Conventional VRF transformation

#### Combined effect of "origin" and "scale" change:

$$c'(P_i) = (1 + \delta s) \cdot c(P_i) + \delta W_o$$

$$H'(P_i) = (1 + \delta s) \cdot H(P_i) + \frac{\delta W_o}{\gamma_i}$$

$$\tilde{H}'(P_i) = (1 + \delta s) \cdot \tilde{H}(P_i) + \frac{\delta W_o}{\gamma_i}$$

Should we use the above conventional models to infer VRF inconsistencies over a terrestrial network?



### Optimal LS inversion

Given two realizations VRF (**d**) and VRF '(**d**'), and a weight matrix **P** for their differences, the relative 'datum perturbations' can be jointly estimated as:

$$\begin{bmatrix} \delta \hat{W_o} \\ \delta \hat{s} \end{bmatrix} = \begin{bmatrix} \mathbf{q}^T \mathbf{P} \mathbf{q} & \mathbf{q}^T \mathbf{P} \mathbf{d} \\ \mathbf{d}^T \mathbf{P} \mathbf{q} & \mathbf{d}^T \mathbf{P} \mathbf{d} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{q}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \\ \mathbf{d}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \end{bmatrix}$$

(\*) If **d** & **d**' are geopotential numbers

$$\mathbf{q}^T = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$$

(\*) If **d** & **d**' are orthometric or normal heights

$$\mathbf{q}^T = \begin{bmatrix} 1/\gamma_1 & \cdots & 1/\gamma_N \end{bmatrix}$$



### Optimal LS inversion

Given two realizations VRF (**d**) and VRF '(**d**'), and a weight matrix **P** for their differences, the relative 'datum perturbations' can be jointly estimated as:

$$\begin{bmatrix} \delta \hat{W}_o \\ \delta \hat{s} \end{bmatrix} = \begin{bmatrix} \mathbf{q}^T \mathbf{P} \mathbf{q} & \mathbf{q}^T \mathbf{P} \mathbf{d} \\ \mathbf{d}^T \mathbf{P} \mathbf{q} & \mathbf{d}^T \mathbf{P} \mathbf{d} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{q}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \\ \mathbf{d}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \end{bmatrix}$$

Invertible matrix, provided that:  $\Box$  (**d**,**q**)  $\neq$  0



| Network                               | d         | ď′     | $\delta \hat{W_o}$ (gpu) | $\delta \hat{s}$ (ppm) |
|---------------------------------------|-----------|--------|--------------------------|------------------------|
|                                       | EVRF00    | EVRF07 | 0.025                    | 2.9                    |
| 20 EUVAL DA                           | GPS/EGG08 | EVRF07 | 0.044                    | -76.6                  |
| 20 EUVN_DA<br>points<br>(Switzerland) | GPS/EGG97 | EVRF07 | -0.159                   | -107.7                 |
|                                       | LN02      | EVRF07 | -0.251                   | 35.7                   |
|                                       | LHN95     | EVRF07 | -0.060                   | -220.7                 |
| 22 EUVN_DA<br>points<br>(Hungary)     | GPS/EGG08 | EVRF07 | -0.035                   | -110.9                 |



### Residuals (mean/std)

| Network                               | d         | ď′     | Before<br>transformation<br>(cm) | After<br>transformation<br>(cm) |
|---------------------------------------|-----------|--------|----------------------------------|---------------------------------|
|                                       | EVRF00    | EVRF07 | 2.8 / 0.3                        | 0.0 / 0.2                       |
| 20 EUVN DA                            | GPS/EGG08 | EVRF07 | -3.2 / 5.2                       | 0.0 / 2.6                       |
| 20 EUVN_DA<br>points<br>(Switzerland) | GPS/EGG97 | EVRF07 | -27.1 / 9.9                      | 0.0 / 7.6                       |
|                                       | LN02      | EVRF07 | -22.0 / 6.9                      | 0.0 / 6.6                       |
|                                       | LHN95     | EVRF07 | -28.3 / 14.0                     | 0.0 / 5.6                       |
| 22 EUVN_DA<br>points<br>(Hungary)     | GPS/EGG08 | EVRF07 | -6.1 / 2.8                       | 0.0 / 2.3                       |



### Another example

| Network                                                       | d      | ď′     | $\delta \hat{W_o}$ (gpu) | $\delta\hat{s}$ (ppm) |
|---------------------------------------------------------------|--------|--------|--------------------------|-----------------------|
| 13 'core datum'<br>UELN points over EU<br>(see Sacher et al.) | EVRF00 | EVRF07 | 0.002                    | -25.5                 |
|                                                               |        |        |                          |                       |

It should be zero (theoretically)!



#### The effect of LS correlation...

$$\begin{bmatrix} \delta \hat{W_o} \\ \delta \hat{s} \end{bmatrix} = \begin{bmatrix} \mathbf{q}^T \mathbf{P} \mathbf{q} & \mathbf{q}^T \mathbf{P} \mathbf{d} \\ \mathbf{d}^T \mathbf{P} \mathbf{q} & \mathbf{d}^T \mathbf{P} \mathbf{d} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{q}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \\ \mathbf{d}^T \mathbf{P} (\mathbf{d}' - \mathbf{d}) \end{bmatrix}$$

#### Equivalently,

$$\delta \hat{W}_{o} = \frac{\mathbf{q}^{T} \mathbf{P} (\mathbf{d}' - \mathbf{d})}{\mathbf{q}^{T} \mathbf{P} \mathbf{q}} + \rho_{\delta \hat{W}_{o}, \delta \hat{s}} \left( \frac{\mathbf{d}^{T} \mathbf{P} \mathbf{d}}{\mathbf{q}^{T} \mathbf{P} \mathbf{q}} \right)^{1/2} \delta \hat{s}$$

$$\rho_{\delta\hat{W}_{o},\delta\hat{s}} = -\frac{\mathbf{q}^{T}\mathbf{P}\mathbf{d}}{(\mathbf{d}^{T}\mathbf{P}\mathbf{d})^{1/2} \cdot (\mathbf{q}^{T}\mathbf{P}\mathbf{q})^{1/2}} \approx -\frac{mean[\mathbf{d}]}{rms[\mathbf{d}]}$$



#### Alternative $\delta s$ -estimation scheme

Based on the **height differences** that can be formed **within each frame** (for a number of VRF baselines) using a suitable selection matrix **B** 

$$\delta \hat{s} = \frac{\mathbf{d}^T \mathbf{B}^T \mathbf{P}^* \mathbf{B} (\mathbf{d}' - \mathbf{d})}{\mathbf{d}^T \mathbf{B}^T \mathbf{P}^* \mathbf{B} \mathbf{d}}$$

**P**\*: weight matrix for the double differences **B**(**d**'-**d**)

- Selection of VRF baselines
- Choice of weight matrix P\*
- $\Box$   $\delta W_o$  can be estimated after reducing **d** and **d**' to a common spatial scale



| Network                                                 | d      | ď′     | $\delta \hat{W_o}$ (gpu) | $\delta \hat{s}$ (ppm) |
|---------------------------------------------------------|--------|--------|--------------------------|------------------------|
| 13 'core datum' UELN points over EU (see Sacher et al.) | EVRF00 | EVRF07 | 0.002                    | -25.5                  |

#### Alternative 'sequential estimation scheme'

| From independent baselines with $\mathbf{P}^* = (\mathbf{B}\mathbf{P}^{-1}\mathbf{B}^T)^{-1}$ | 0.002 | -25.5 |
|-----------------------------------------------------------------------------------------------|-------|-------|
| From independent baselines with $P^* = I$                                                     | 0.002 | -16.9 |
| From independent baselines with $\mathbf{P}^* = f(1/L_{ij})$                                  | 0.001 | -13.6 |
| From all baselines with $\mathbf{P}^* = \mathbf{I}$                                           | 0.002 | -25.5 |
| From all baselines with $\mathbf{P}^* = f(1/L_{ij})$                                          | 0.003 | -27.2 |



| Network                            | d    | ď′     | $\delta \hat{W_o}$ (gpu) | $\delta \hat{s}$ (ppm) |
|------------------------------------|------|--------|--------------------------|------------------------|
| 20 EUVN_DA points<br>(Switzerland) | LN02 | EVRF07 | -0.251                   | 35.7                   |

#### Alternative 'sequential estimation scheme'

| From independent baselines with $\mathbf{P}^* = (\mathbf{B}\mathbf{P}^{-1}\mathbf{B}^T)^{-1}$ | -0.251 | 35.7 |
|-----------------------------------------------------------------------------------------------|--------|------|
| From independent baselines with $P^* = I$                                                     | -0.293 | 78.7 |
| From independent baselines with $\mathbf{P}^* = f(1/L_{ij})$                                  | -0.295 | 80.1 |
| From all baselines with $P^* = I$                                                             | -0.251 | 35.7 |
| From all baselines with $\mathbf{P}^* = f(1/L_{ij})$                                          | -0.241 | 25.6 |



| Network                        | d         | ď'     | $\delta \hat{W_o}$ (gpu) | $\delta\hat{s}$ (ppm) |
|--------------------------------|-----------|--------|--------------------------|-----------------------|
| 22 EUVN_DA points<br>(Hungary) | GPS/EGG08 | EVRF07 | -0.035                   | -110.9                |

#### Alternative 'sequential estimation scheme'

| From independent baselines with $\mathbf{P}^* = (\mathbf{B}\mathbf{P}^{-1}\mathbf{B}^T)^{-1}$ | -0.035 | -110.9 |
|-----------------------------------------------------------------------------------------------|--------|--------|
| From independent baselines with $P^* = I$                                                     | -0.039 | -92.0  |
| From independent baselines with $\mathbf{P}^* = f(1/L_{ij})$                                  | -0.031 | -131.4 |
| From all baselines with $P^* = I$                                                             | -0.035 | -110.9 |
| From all baselines with $\mathbf{P}^* = f(1/L_{ij})$                                          | -0.037 | -104.1 |



#### Vertical S-transformation

#### **Forward**

$$\mathbf{d} = \mathbf{d}^o + \begin{bmatrix} \mathbf{q} & \mathbf{d}^o \end{bmatrix} \begin{bmatrix} \delta W_o \\ \delta s \end{bmatrix}$$

#### Inverse

$$\begin{bmatrix} \delta \hat{W_o} \\ \delta \hat{s} \end{bmatrix} = \begin{bmatrix} \mathbf{q}^T \mathbf{q} & \mathbf{q}^T \mathbf{d}^o \\ \mathbf{d}^{oT} \mathbf{q} & \mathbf{d}^{oT} \mathbf{d}^o \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{q}^T (\mathbf{d} - \mathbf{d}^o) \\ \mathbf{d}^{oT} (\mathbf{d} - \mathbf{d}^o) \end{bmatrix}$$

Important tool  $\rightarrow$  full or partial inner constraints

(\*) development of an optimal VRF from heterogeneous data sources (e.g. leveling, GPS/geoid, tide-gauge data, etc.)



### Summary

- $\Box$   $\delta W_o$  and  $\delta s$  are the basic conventional VRF transformation parameters (for static cases)
- Useful for evaluating the spatial consistency between different VRFs (additional distortion modeling may be also needed)
- A conventional VRF transformation provides the basis for vertical datum definition in cases of heterogeneous height data
- Generalization to time-dependent problems is necessary (temporal evolution of a VRF)



### Acknowledgements

- Ambrus Kenyeres (FOMI) for providing Hungarian height data from the EUVN\_DA project
- Urs Marti (SwissTopo) for providing Swiss height data from the EUVN\_DA project



## Thanks for your attention!

#### C. Kotsakis