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Starting hypotheses 
 

Methodology: 
>>with particular attention to the new concepts 

 
A case study: 

a dense network in Japan 
 

Preliminary results on EPN analysis 
  



 
 

The temporal scale 
 

Permanent networks provide continuous time series; 
 

deformations are computed at discrete epochs: 
 

a time model is needed. 
  



The spatial scale 
 
Permanent networks provide discrete in space observations; 

deformations are represented by a field: 
 

a spatial model is needed. 
 

To study large areas deformations should be analyzed  
on the ellipsoid surface (curvilinear coordinates)  

and not on some planar projection: 
 

>>a metric deformation function is required  
to restore orthogonal deformation parameters  

from curvilinear analyses. 
 
  



The estimation process 
 

Preprocessing 
 

Estimation of the linear trend for each station P. 
Clustering of one region in homogeneous networks. 

Estimation of the Tisserand parameters 
for homogeneous networks. 

 
Processing 

 
Within each homogeneous network, 

modeling of the deformation at any point, by: 
 

finite elements (interpolation), 
and/or collocation (prediction). 



The temporal scale: a linear interpolation 
 
Coordinates on a short time span are linear functions of time. 

 
Observation model for each station: 
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Stochastic model, for the network: 

 
At first iteration  
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Estimation of 0 , ,k ikkη v ε  by Least Squares; 
 

empirical estimation of C. 
 

identical for each epoch, 
no correlations between different epochs. 
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>>simplified but stochastically rigorous covariance estimation 
>> no iterative approach required. 



 
  Horizontal deformation on the surface

of the reference ellipsoid

Actual deformation is 3-dimensional

t t

Horizontal deformation on ellipsoidal surface



 
 

But we can observe only on 2-dimensional earth surface!

t t

Extrapolation

t t

Interpolation

Why not 3D deformation? 
3D deformation: interpolation and extrapolation.
Extrapolation from surface geodetic data is not reliable 
if no additional geophysical data are available.
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Discrete geodetic information at GPS permanent stations

Interpolation to obtain continuous displacement information

Differentiation to obtain the deformation gradient F displacement gradient
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Horizontal deformation analysis

Spatial interpolation
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Interpolation 
in presence of 
discontinuities 
 
Separation of rigid motion 
from deformations: 
 
piecewise analysis 
is needed before 
interpolation. 
 
  

Bad spatial interpolation
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Apart from internal deformation regions are in relative motion

Separation of rigid motion from deformation



  

Original RS Optimal RS

Separation of rigid motion from deformation

How to represent the motion of a deforming region as a whole?
By the motion of a regional optimal reference system.

Optimal: such that the corresponding displacements are as small as possible.
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Definition of optimal reference frame:
Minimization of relative kinetic energy
of regional network
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Discrete Tisserand reference system

Solution:
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= relative angular momentum

Separation of rigid motion from deformation

Horizontal motion on earth ellipsoid (  sphere): 
Rotation around an axis with angular velocity 



Deformation analysis within one network 
 

Estimation of the inner deformations between 
two network states at two epochs t  and t. 

 
Deformation function: 
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Deformation gradient in space domain: 
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Interpolation of F by finite elements: 

Biagi and Dermanis, IAG Symposia Volumes 131 
  



 
Finite elements 
 
Deterministic interpolation 
 
Piecewise 
displacements and 
deformations. 

Collocation 
 
Stochastic prediction 
 
Continuous  
displacements and 
deformation field. 

 
  



 
Observations errors 

completely absorbed in 
estimated deformations 
prediction. 

can be filtered by the 
prediction. 
 
 

Accuracies estimates 
only functions of 
observations uncertainties. 

reflect both observations and 
signals uncertainties. 

  



Prediction of F by collocation 
 
Estimated displacements ( )

ix xiu t v t , ( )
iy yi

u t v t  at the network 
points iP are used to predict displacements and/or 
displacement gradient elements at any point P: 
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2. A rotation is applied to the network to obtain 
 

( , ) 0
x yu uC P Q   

 
>>Remove: 
>>empirical decorrelation of displacements on the sphere. 
  



Choice of the model covariance function for the 
displacements: 
 
Exp: 
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>>Legendre Polinomials:
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3. Empirical estimation of the covariance function parameters. 
 
>>In case of Legendre polynomials: 
>>application of Not Negative Least Squares to  
>>find and estimate not zero coefficients. 
  



Construction of observation vector/covariance matrix 
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5. Prediction of a signal t  at any point P: two approaches 
 
A. Exact interpolation:  1ˆ

ts ss
t C C s 

B. Smoothing:     1ˆ [ ]ts ss 
 t C C C s 

 
where C is the estimated covariance matrix of the 
displacements errors. 
  



Computation of the crosscovariance matrix tsC  
 

If 
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Deformation Jacobian 
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The same can be applied to { }

ytuC  



Estimation of the covariance matrix of the predicted signal 
 

A.  
Exact interpolation 

Covariance matrix of the predictions: 1 1
ˆ̂

T
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Covariance matrix of the errors: ˆ̂tt C C  

 
B. 

Smoothing 
Covariance matrix of the predictions: 1

ˆ̂ ( ) T
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Covariance matrix of the errors: 1( ) T

tt ts ss ts 
  C C C C C C  

 
>>Restore of the decorrelation into the predicted signals 

 
From ˆ ˆ( ) ( )P P F I J  the deformation parameters are computed. 
  



Eigenvalues and angles: max min ( )( ), ( ), PP P     
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Shears ( )( ), PP    and scale s 
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Covariance propagation from the deformation gradient 
to the deformation parameters. 

 
For example, if 
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under a first order approximation ˆ( )Vec
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The metric on the ellipsoid 
 
In case of planar coordinates, the computation 
 

0 max min[ , ] [ , , , , , ]T
        η u F F F  

 
is direct, either by finite elements or by collocation. 
 
In case of curvilinear (geodetic) coordinates,  
one more step is needed: 
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where D is the matrix of the metric deformation on the 
ellipsoid surface, here not discussed into details. 
 
 



The case study: Japan network 
 

One year (2005) of daily solutions of the 
Japan PN ( 1200 SP). 

 
Preprocessing: 

rejection of bundlers, 
clustering of the network in homogeneous subregions, 

selection of a particular subregion as a case study, 
Delaunay triangulation. 

 
Prediction of the deformation parameters, 

by finite elements and collocation. 
 

Comparisons. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Original displacements Tisserand displacements 



Decorrelation of the signals in longitude and latitude 

Before decorrelation After decorrelation 



Empirical estimation of the model covariances 
  

Longitude and latitude displacements: 
comparisons between NNLS Legendre fitting and 

a typical choice of exponential covariance 



  
  

Tisserand analyses of  
R1 and R3 wrt R2. 
Separate deformation predictions. 

R1-SouthWest 
rotation 
 
R3-North 
translation 
 
R2-Center 
compression 



  
  

Eigenvalues of deformation gradient 

Finite elements Collocation 



     
  

Finite elements Collocation 

Shears and dilatations 



 
 

Signal to noise ratios 
Finite elements          Collocation 



Methodological results and conclusions 
 

New algorithms for curvilinear (geodetic) coordinates 
have been studied and implemented for 

 
1. Tisserand analysis on networks. 
2. Displacements and deformation field prediction, 
 both by finite elements and by collocation. 
3. LP's NNLS fitting of empirical covariance function. 
4. Covariance propagation from time series to  
 deformation parameters. 

 
WRT finite elements, collocation provides 
1. continuous estimates, 
2. smooth results, 
3. more realistic variance-covariance assessment. 
  



First trials on EPN: class A solution of GPSW 1570 
 

Original velocities (in ITRF2005) 

 
  



Tisserand velocities 
 

 
 

Note: in this very first analysis:  
all the EPN stations used, no subregion clustering. 

  



Comparisons between ITRF-Tisserand and ETRF 
 

 
 

A small rotation due to the no subregion clustering 
between class A EPN stations (stable part of Europe). 

  



Numerical differences 
 
 (ITRF+Tiss)-(ETRF) (ITRF+Tiss)-(ETRF+Tiss) 
 East North East North 
E -1.3 0.2 0.0 0.0 
StdDev 0.6 0.4 0.2 0.2 
min -2.8 -1.0 -1.2 -0.7 
max 0.8 1.4 0.5 1.0 

 
Application of Tisserand principle to ETRF coordinates leads to 

almost identical results. 
 

What about spatial covariances of Tisserand displacements? 
  



Empirical covariances (without model estimation) 
 

East and North 
displacements in 
pseudo-mm:  
no correlated 
signal to predict. 
 
A macro 
clustering 
between 
subregions 
would be useful. 
 

The relative motion of subregions could be estimated; 
to predict deformations in subregions,  denser networks are 
needed. 


