

Developments towards GNSS real-time service in GFZ

Dousa, J., Ge, M., Chen J., Gendt, G.

Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum

Geng, J.

University Institute of Engineering Surveying and Space Geodesy, University of Nottingham

EUREF 2010 Symposium

June 3-5, Gavle, Sweden

Contents

EPOS-RT software

software characteristics

software evaluation

Real-time clock estimation in GFZ

service design

real-time product evaluation

Potentials for improving PPP

impact study of multi-GNSS

impact study of zero-difference ambiguity resolution

Precise Point Positioning (PPP)

- ③ state-space representation suitable for global positioning service
- ③ doesn't require bi-directional user/service communication
- ③ highly efficient technique to support infinite number of autonomous users
- ⊗ difficulties with (fast) ambiguity resolution
- ⊗ long-convergence time (>20-30min)
- ☺ impossible to reduce regionally dependent systematic errors
- ⊗ lower accuracy compared to regional services/RTK

Existing projects/services

- IGS Real-time Pilot Project (IGS-RTPP)
- EUREF-IP project
- commercial services: OmniSTAR XP/G2, GDGPS, StarFire[™] (two supports GPS+GLONASS)

EPOS-RT (Earth satellite Positioning and Orbit determination System in Real-Time)

- designed and developed by *Maorong Ge*
- contributions from Junping Chen, Jan Dousa, Gerd Gendt
- LAMBDA ambiguity resolution technique from Delft University
- BNC/BNS tools from BKG (receiving or casting data streaming via internet)
- PANDA subroutines and the PIO-concept, cooperated with *Dr. Chuang Shi* and his colleagues at the GNSS research Center of Wuhan.

EPOS-RT software

Core EPOS-RT software characteristics

- developed as a basis for future GFZ software
- high level of generality
 - PPP mode, network mode
 - Real-time, post-mission
 - Static, kinematic, dynamic positioning
 - Support for GNSS, VLBI, SLR, ...
 - PIO concept (Platform, Instrument, Observation)
- all models for un-difference level processing

Components:

- SRIF estimator (+ LSQ in preparation) fotran
- central control unit (CCU) c++
- open source software (BNC, BNS, StreamOrbits, ...)
- web-monitoring tool (MySQL, php/java)

EPOS-RT Interface

Central Control Unit:

- Configuration, control of the system
- UDP, TCP, NTRIP server, shared memory
- Monitoring and e-mail warnings
- Job scheduler

ELMHOLTZ

ASSOCIATION

- Download external files via FTP
- Graphic user interface

RIF configura	tion ? – 🗆 >
0 SRIF 1	General
marker //dsk	/gseis1/test_wrk/honza/CLKAKP/inp/marker_CLK
_de405 /dsk	/gseis1/test_wrk/honza/CLKAKP/inp/jpleph_de405
iver_file //dsk	/gseis1/soft_wrk/honza/GSEIS/file_template/RECEIVER
bject /dsk	/gseis1/test_wrk/honza/CLKAKP/inp/object_CLK
x_cddis	
tacoord //dsk	/gseis1/test_wrk/honza/CLKAKP/inp/coord_CLK
sp3 /dsk	/igs4/igsprod/igu/w <wk>/igu<wk><dw>_<hr-6>.sp3</hr-6></dw></wk></wk>
_output /dsk	/gseis1/test_wrk/honza/CLKAKP/out/ <year><doy>_<hr/><pgm>.par</pgm></doy></year>
talist	
ordc /dsk	/gseis1/test_wrk/orbits/ <year>/<doy>/brds<doy>_<hr-2>.<yr>n</yr></hr-2></doy></doy></year>
b_file ftp://	//ftp.unibe.ch/aiub/CODE/P1P2_ALL.DCB
load files	//dsk/igs_routine/EPOS8/GEN_CENTRAL/STA/oload_FES2004_no_cmc.gps
clk /dsk	/gseis1/test_wrk/honza/CLKAKP/run/brd_ <year><doy><hr/><-pgm>.clk</doy></year>
plut files	//dsk/igs_routine/EPOS8/ALL_IGS/GEN/ERP/pinit.SNX_B. <yr>.001_999</yr>
s_gnss	
antpov files	//dsk/igs_routine/EPOS8/GEN_CENTRAL/MOD/igs_absolute.atx
sinex	
dc_gps //dsk	/gseis1/test_wrk/orbits/ <year>/<doy>/brds<doy>_<hr-2>.<yr>n</yr></hr-2></doy></doy></year>
trl_file /dsk	/gseis1/test_wrk/honza/CLKAKP/inp/ctrl_ <pgm>_CLKA</pgm>
orb /dsk	/gseis1/test_wrk/honza/CLKAKP/run/orb- <year><doy><hr/><pre>composed</pre></doy></year>
ut1_tide file:	///dsk/igs_routine/EPOS8/GEN_CENTRAL/MOD/poleut1_tide_table8.x

7

ASSOCIATION Real-time motion monitoring (1)

- Station on the roof of building A17 at GFZ, instrument to change station height
- BNC used to receive real-time streams
- Reference station POTS meters away, L1 real-time solution with ambiguity fixing
- antenna height change up (+15 cm) and after 105 min down (-20 cm)

GFZ

PPP based positioning system

Global real-time network

- > 70 real-time streams configured: IGS RTPP / EUREF-IP / GFZ
- reality: approximately 45-50 available

HELMHOLTZ

ASSOCIATION

Real-time clock estimation

Processing strategy

ASSOCIATION

- Orbits fixed to IGS/GFZ ultra-rapid products (6h/3h update)
- Estimated satellite & receiver clocks and ZTDs
- Station coordinates actually fixed to the long-term IGS coordinates
- Three stations estimated with kinematic coordinates for monitoring
- Bancroft/channel filter pre-processing, a posteriori quality check
- Two processing strategies applied:

1) zero-differenced observations

epoch-by-epoch independent clock estimation better alignment thanks to the 'absolute' estimation need for convergence time (tens minutes) many ambiguities (large normal equations) requires more CPU (actually 5 sec update rate)

2) epoch-differenced observations

fast initialization

epoch-difference clocks estimation w.r.t to reference clocks requires clock-differences accumulation in time ambiguities eliminated (small normal equations) small demands for CPU (actually 1 sec update rate)

Real-time System Scheme

Variant X

Real-time clocks comparison

Epoch-difference

stddev ~ 0.1 ns (~10cm)

Zero-difference

stddev ~ 0.2 ns (~20cm)

Real-time clock estimation

HELMHOLTZ ASSOCIATION POTENTIAL for PPP improvements

Impact study for PPP improvements

- epoch-by-epoch processing (post-mission)
- kinematic positioning mode (30 sec sampling)
- precise orbits and clocks fixed (based on batch processing)
 - multi-GNSS solution
 - ambiguity resolution in PPP

Multi-GNSS solution

- GPS, GLONASS and in future Galileo, COMPAS, ...
- better geometry, more observations
- inter-channel biases for multi-GNSS (and GLONASS)

PPP (zero-difference) ambiguity fixing

- based on the possibility to restore the integer nature of zero-difference ambiguities by estimating two-step procedure:
- **1.** <u>Service side:</u> estimating fractional wide-lane (WL) and narrow-lane (NL) uncalibrated phase delays (UPDs) for satellite-based single-differences (SD)
- 2. <u>User side (PPP)</u>: applying SD WL & NL UPDs and resolve the ambiguities

Ge, M., Gendt, G., Rothacher, M., Shi, C., Liu, J. (2007), Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J Geod, Vol 82, No 7, pp 389-399

Geng, J., Teferle, F.N., Shi, C., Meng, X., Dodson, A.H., Liu, J. (2009), Ambiguity resolution in precise point positioning with hourly data, GPS Solut

Impact of multi-GNSS

Impact of ambiguity fixing

LMHOLTZ

ASSOCIATION

GFZ

Helmholtz Centre Potsdam

Multi-GNSS PPP solution supports:

MHOLTZ

ASSOCIATION

- \blacktriangleright shorter convergence time (reduced by a factor of ~ 2)
- slightly improved achievable accuracy
- more robust solution

Integer ambiguity resolution in PPP supports:

- convergence time is equivalent to the time-to-first-fix (TTFF)
- improved accuracy and high stability after TTFF

Summary

EPOS-RT software

- developed as a general software package (and future GFZ software)
- evaluated in different real-time/simulated processing modes
- RT-service & PPP mode, network mode...

Real-time service in GFZ

- RT satellite clock estimation (~50 stations):
 - 1.0 Hz epoch-difference mode StdDev ~0.1 ns
 - 0.2 Hz zero-difference mode StdDev ~0.2 ns
 - new combined mode in preparation
- Achievable kinematic coordinate accuracy (RMS)
 - horizontal ~3 cm
 - vertical ~5 cm

On-going developments for improving PPP positioning

- multi-GNSS solution
- support for integer ambiguity resolution in real-time
- regional augmentations

Thank you!