Independent strategies for GPS data processing applied to the New Italian Geodetic Reference Network (RDN)

M. Barbarella, <u>S. Gandolfi</u>, L. Ricucci, A. Zanutta, DISTART – University of Bologna. ITALY

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distar

Introduction

- During the last two years the IGMI has decided to define a new Geodetic Reference Frame based on GNSS permanent stations homogeneously distributed along the Italian territory
 - Considering the presence in Italy of more than 400 GNSS stations, realised for many scientific and technical purposes, IGM has decided to define the reference system using a selection (about 100) of the already working GNSS permanent stations
 - For the computation of this network a dataset of GPS data and the Bernese scientific software have been used by IGM following the guidelines defined by EUREF for network densification

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distar

Aim of this research

- Study on accuracy and precision evaluation of the network solutions coming from different strategies of computation and the use of different scientific software.
 - The processing of these data has been indeed performed using three software:
 - Bernese,
 - Gamit-Globk
 - **Gipsy-Oasis II** (used in Precise Point Positioning approach).
 - Starting from the mandatory guidelines defined by EUREF, others parameters have been considered.
 - In particularly considering limits and peculiarity of each software, some different choices (strategies) which can affect the final solution have been considered.

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distar

Other considerations

- Different solutions coming from different software constitute and added value for the determination of the best values (in term of positions and velocities) of a GNSS permanent network.
- Using different software some systematical error can be found and removed.
 - In detail, the realization of automatic (semi-automatic) procedures for GNSS permanent stations data processing impose the realization of files containing, for each station information on Antenna, Receivers, offset, etc...
 - (a mistake introduced in this files introduce a bias non detectable without external comparison).

From the Euref guidelines something is mandatory somethings is recomended ...

Processing Options

- 1. Use the final IGS products.
- 2. Introduce ocean-loading corrections for the stations.
- 3. Use a 10° elevation cut off angle and elevation dependent weighting of observations.
- 4. Use the Niell mapping function to map the tropospheric delay in zenith direction.
- 5. Recommendations
 - a. Estimate hourly station specific troposphere parameters.
 - b. Fix the initial phase ambiguities to integer numbers.

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

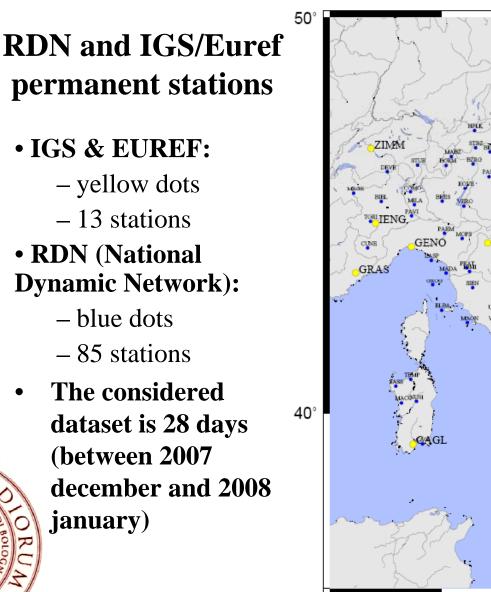
EUREF Permanent Network (from *Processing Options Table*)

	Τγρ	o Valuo	GP from	S wee	
Ambiguity fixing	Reccomended		860		
Antenna Phase Center Corrections	Mandatory		860		
Observation Cut Off	Reccomended	15°	860	11:	
Angle	Mandatory	10°	1130		
Observation Weighting	Mandatory	Apply elevation dependent weighting to the observations. AC's which can not use an elevation dependent weighting scheme are advised to continue using a 15° elevation cut off angle			
Observation Sampling Rate	Reccomended	Use an observation sampling rate of 180 sec for the final parameter estimation.			
GPS Satellite Orbits	Mandatory	Use IGS or CODE orbits	860	11	
or o oatenite orbits	Mandatory	IGS Final Orbits.	1130		
Orbits and Earth Orientation Parameter Consistency	its and Earth ntation Parameter Mandatory GPS satellite orbits and earth orientation parameters have to be consistent. sistency Specification : If you use Bernese GPS Software include the RMS of unit weight, number of		860		
RMS in SINEX files			1130		
Tidal Displacements	Mandatory	Apply ocean loading corrections for the stations	1130		
Troposphere Mapping Function	Mapping Mandatory Niell Mapping Function		1130		
Number of Troposphere Parameters	Reccomended	Estimate one troposphere parameter for every 2 hours for each station.	860	11	
	Reccomended	Estimate hourly troposphere parameters for each station. This option is mandatory for ACs contributing to the Troposphere Special Project	1130		
Troposphere Parameter Reference	posphere Parameter Reccomended Generate a weekly coordinate solution. Re-generate the daily troposphere parameter solutions		1130		
Global Troposphere Parameters	Reccomended	Specification : Introduce the troposphere parameter estimates of the global network solution as a-priori values.	1130		
Global Troposphere Parameters	Reccomended	No introduction of global troposphere parameter estimates (delete version A of this option).	1130		
A Priori Weight of Troposphere Parameters			860		
A Priori Weight of Troposphere Parameters	Reccomended	Specification : Use 5 m a priori weight for the absolute and relative parameters.	860		

Principal boundary condition adopted foreach software at the beginning of the research

- Bernese V5.0 (BPE):
 - All the condition in agree with the Euref Guidelines

• Gamit (V 10.34):

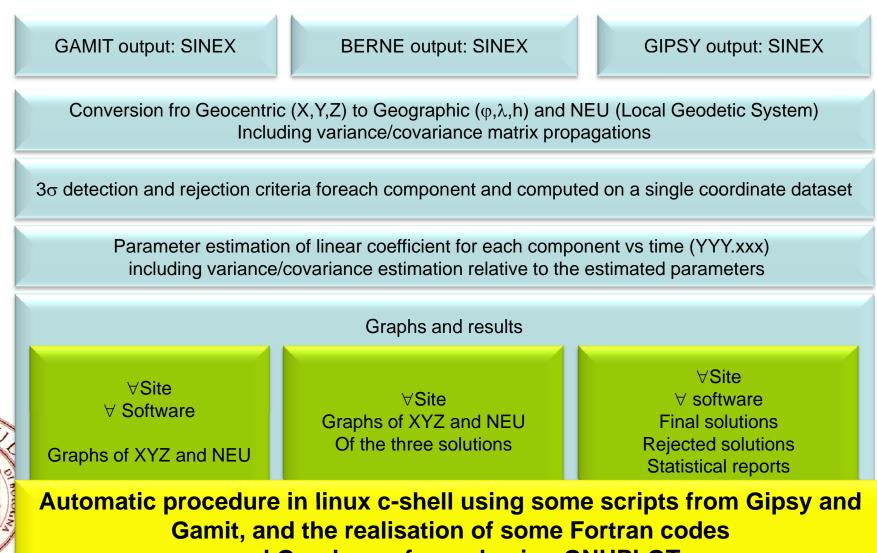

• All the condition in agree with the Euref Guidelines

• Gipsy-Oasis II (V 5.1):

- PPP approach whitout ambiguity resolution,
- Stacov2x script for determination of transformation parameters computed using daily PPP solution and the ITRF2005 sinex files for the 13 common permanent stations

STRUCTURAL, TRANSPORT, HYDRAULIC, SURVEY AND TERRITORY ENGINEERING - DISTART

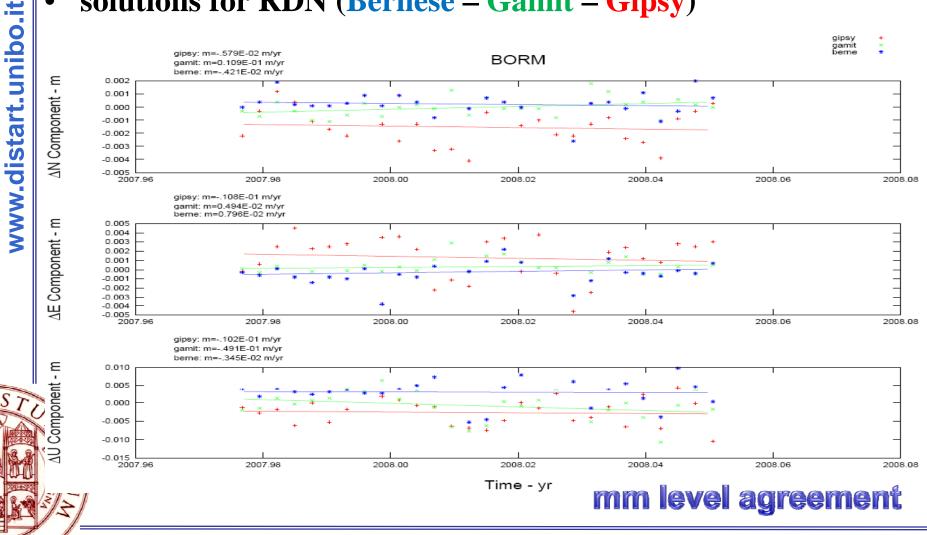
•



STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Adopted post-processing procedure for the data comparison and Outlier detection

www.distart.unibo.it

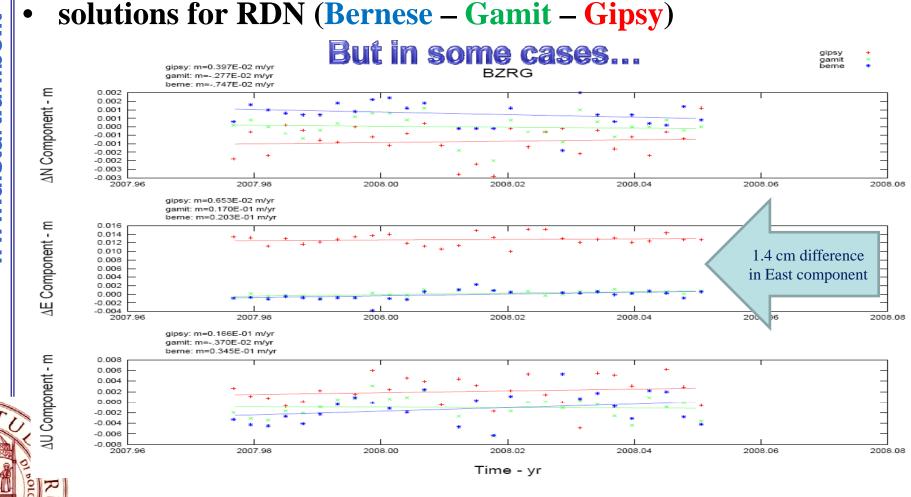


and Graphs performed using GNUPLOT

URAL, TRANSPORT, HYDRAU DISTART NG

Some results (comparison of the three solutions):

solutions for RDN (Bernese – Gamit – Gipsy)

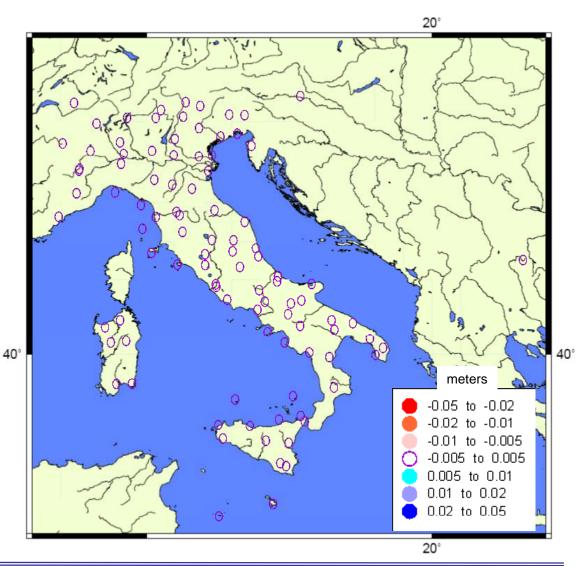


Euref 2009 Symposium - 27th - 30th May, 2009 - Florence, ITALY

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Some results (comparison of the three solutions):

www.distart.unibo.it

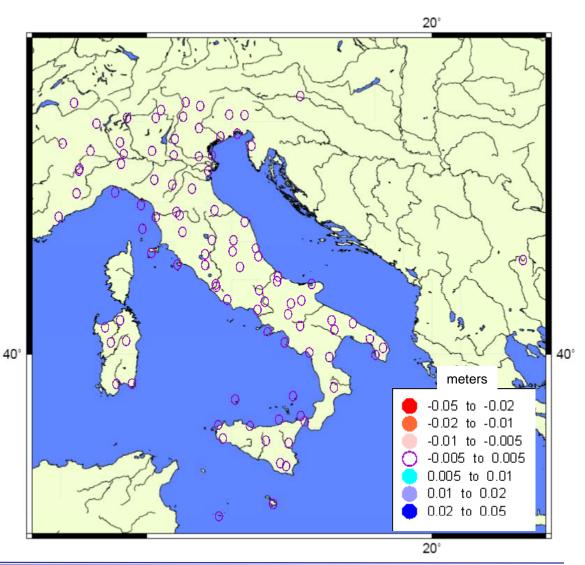

Only the Gipsy solution evidence this problem (?)

www.distart.unibo.it

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Level Agreement between Bernese and Gamit

- Bernese vs Gamit
- North comp.
- Average solutions
- No differences bigger than 5mm

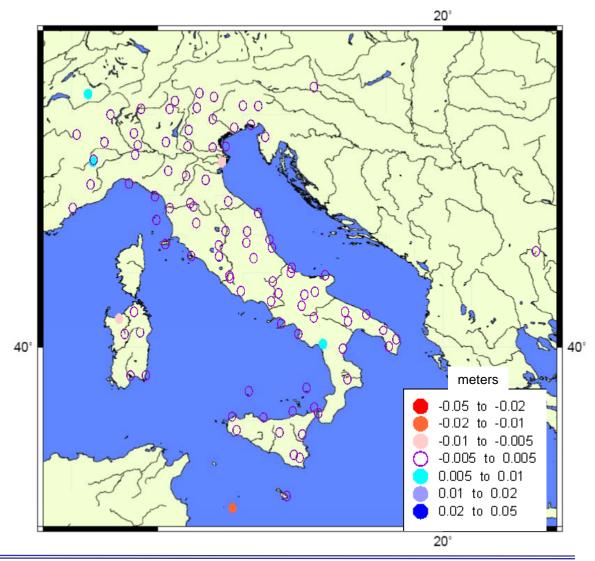


www.distart.unibo.it

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Level Agreement between Bernese and Gamit

- Bernese vs Gamit
- East component
- Average solutions
- No differences bigger than 5mm



www.distart.unibo.it

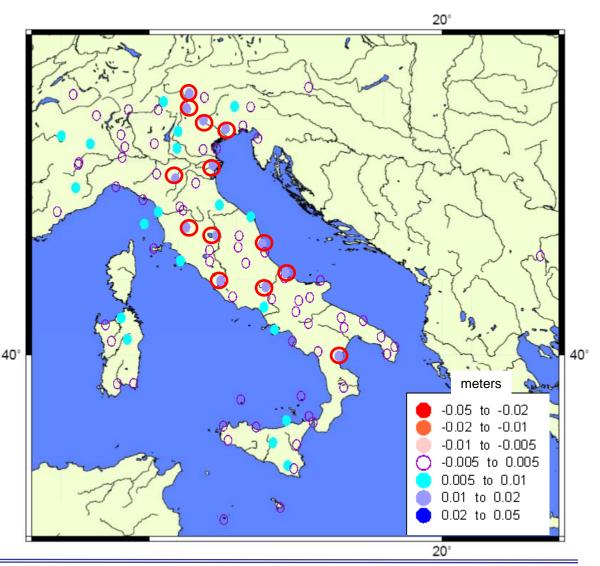
STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Level Agreement between Bernese and Gamit

- Bernese vs Gamit
- Up component
- Average solutions

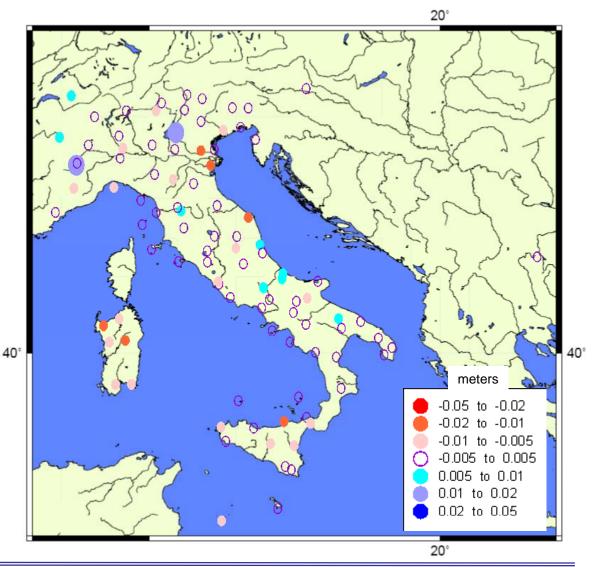
STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Some results (comparison of the three solutions):


- Bernese vs Gipsy
- North component
- Average solutions
- Agreement at cm level

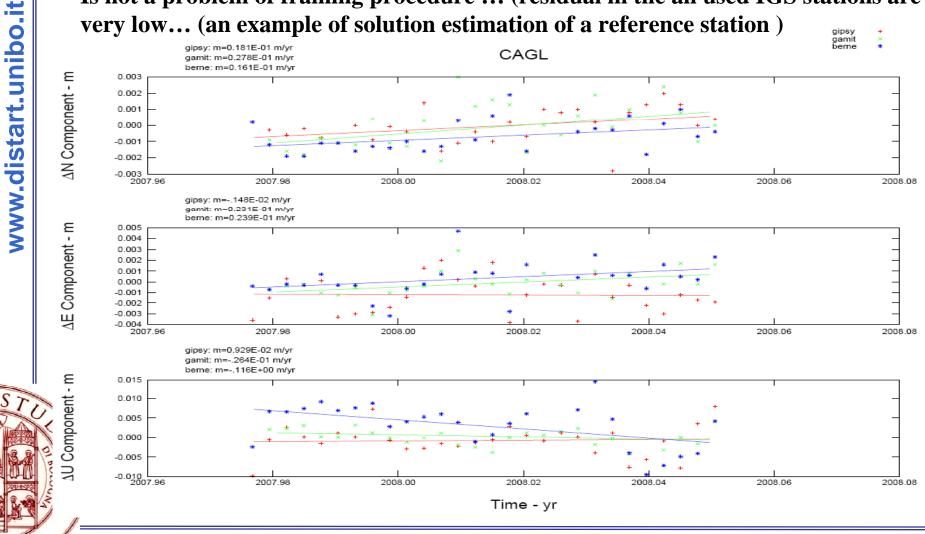
STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Some results (comparison of the three solutions):


- Bernese vs Gipsy
- East component
- Average solutions
- A bias (of about 7 mm up to 1.4 cm) in East component for many stations

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

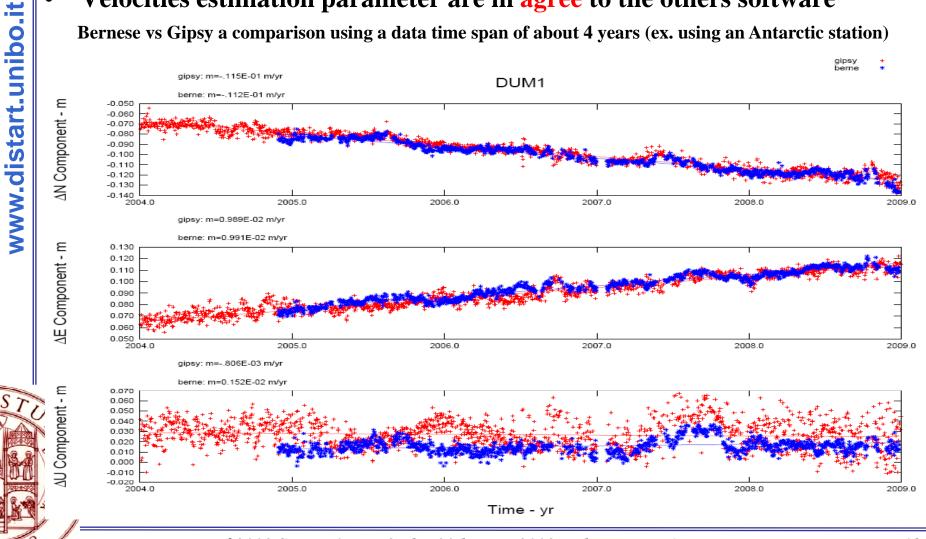
Some results (comparison of the three solutions):


- Bernese vs Gipsy
- up component
- Average solutions
- Agreement at cm level

TURAL, TRANSPORT, HYDRAU DISTART SURVEY AND RING

What about the gipsy solution ?

Is not a problem of framing procedure ... (residual in the all used IGS stations are very low... (an example of solution estimation of a reference station) aipsy

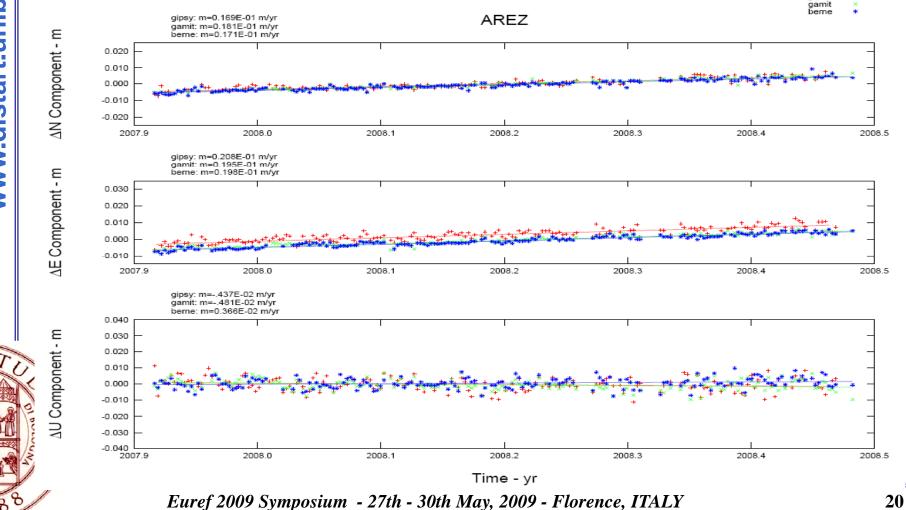

STRUCTURAL, TRANSPORT, HYDRAULIC, SURVEY AND TERRITORY ENGINEERING DISTART

DEPARTMENT

What about the gipsy solution ?

Velocities estimation parameter are in agree to the others software

Bernese vs Gipsy a comparison using a data time span of about 4 years (ex. using an Antarctic station)


Euref 2009 Symposium - 27th - 30th May, 2009 - Florence, ITALY

DEPARTMENT STRUCTURAL, TRANSPORT, HYDRAULIC, SURVEY AND TERRITORY ENGINEERING - DISTART

What about the gipsy solution ?

• Velocities and position (Bernese – Gamit – Gipsy)

a comparison using a data time span of about 1 years (ex. using a ITALPOS Leica station)

=

www.distart.unibo.it

Many tests to find the solution to this problem!!

- IGS products but without azimuth corrections for antenna calibration
- JPL orbits and relative Phase Center Variations
- **GPS_Receiver_types changes**
- Old GIPSY version (version 4)
- New JPL products
- Cut-off angle changes
 - Any obtained solution is different from the others but in term of less than 1mm and no changing of the East component has been found.

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

	site	D_North (Gipsy-Bernese)	D_East (Gipsy-Bernese)	D_Up (Gipsy-Bernese)	Antenna type	Radome	
www.distart.unibo.it	PORD	-0.0002	0.0164	-0.0067	TRM29659.00	UNAV	
	PASS	-0.0024	0.0154	0.0037	LEIAT504GG	LEIS	
	ALFE	-0.0001	0.0143	0.0061	TRM29659.00	UNAV	
	BZRG	-0.0013	0.0135	0.004	LEIAT504GG	LEIS	
	VAST	0.0008	0.013	0.0081	TRM29659.00	UNAV	
	TGPO	0.0004	0.0125	-0.0146	TRM41249.00	NONE	
	MART	0.0002	0.0121	0.0071	TRM29659.00	UNAV	
	SIEN	-0.0002	0.0118	0.0031	LEIAT504GG	NONE	
	TREB	0.0009	0.0116	-0.0042	LEIAT504GG	LEIS	
	MOPS	-0.0001	0.0115	-0.0099	LEIAT504GG	NONE	
	MOSE	-0.0006	0.0113	-0.0068	LEIAT504GG	LEIS	
	STBZ	-0.0013	0.0104	-0.0028	LEIAT504GG	LEIS	
	UNPG	0.0005	0.0101	-0.0049	JPSREGANT_DD_E	E NONE	J
	VERO	-0.0012	0.009	-0.0002	LEIAX1202GG	NONE	
	RSMN	0	0.0089	-0.0044	TRM41249.00	NONE	
	CUNE	-0.0023	0.0086	-0.0077	TRM41249.00	NONE	
	ENAV	-0.0008	0.0075	-0.0022	LEIAT504	LEIS	
	BIEL	0.0014	0.0074	-0.0014	TRM41249.00	NONE	
ST	ENNA	0.0012	0.0073	-0.0098	LEIAX1202GG	NONE	
	MADA	-0.0002	0.0071	0.0002	LEIAX1202	NONE	

An interesting aspects...

Seem that the most bias in the east component are in correspondence of two antenna types:

Leiat504GG	LEIS
TRM29659.00	UNAV

Work still in progress and any suggestion are welcome!

(We have used the last IGS05_www.atx file)

Sorted respect East component (decreasing)

STRUCTURAL, TRANSPORT, HYDRAULIC, ORY ENGINEERING - DISTART

Gamit: Others test splitting the network in more than one cluster

				~ ~ ~]	[]	
	Site	Dx (mm) Dy	/ (mm) Dz	(mm)	50°	\sim 50°
ب ا	acom	0.1	-0.1	0		WIZR WIZR
.it	alfe	-0.2	0	-0.2		
2	amur	-0.3	-0.1	-0.2		B I S Man Company
	aqui	0.1	0.1	0		have show and the second
	biel	0.1	-0.1	0.2		GRAZ GRAZ
	borm	0	-0.1	0		ZINEM CONTRACT STORE ACTIVITY CONTRACT STORE
	brbz	0.1	0.1	0.2		ARE PASS CONTRACTOR
ta	bres	0	-0.1	0		MIROE () MILA BRES VERO PARTED
<u>.</u>	bzrg	-0.2	-0.1	-0.2		e BING PAVI
σ	ca06	-0.2	0.1	-0.2		GENO MEDI
www.distart.unibo	cagl	-0.1	0	0		GEAS
ξ	came	0	0	0		THE DATE OFFICE
Ξ	camp	-0.3	-0.1	-0.2		BER NOV RENO MART
	саро	-0.1	0	0.1		
	cari	0	0	0		
	como	0	0	0		TRUE CARL GROT MARKE THE
	comu	0.4	0.2	0.6		BNAV PILATE SASA
	cucc	-0.3	-0.2	-0.4	40°	
	cune	0.7	0	0.8		
	deve	-0.5	-0.1	-0.4		eusex ester for the second secon
ST	eiiv	-0.3	-0.1	-0.2		· · · · · · · · · · · · · · · · · · ·
IN A	elba	0	0	-0.1		Dx (mm) Dy (mm) Dz (mm)
	enav	-0.2	0	-0.1		
	Cenna 🗌	0	-0.1	0.3		Max 0.7 0.2 0.8
ATTACK AND A	fasa	-0.2	-0.1	-0.2		Min -0.6 -0.2 -0.4
28 2.0	NE A					Average -0.1 0.0 0.0
						20*
1088	5	Eur	ef 2009	Sympo	sium	n - 27th - 30th May, 2009 - Florence, ITALY 23
100			J	J 1		<i>y</i> ,, <u></u>

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distar

Some conclusions and considerations

- The data analysis obtained by the comparison of Gamit and Bernese are in agree at mm level (also splitting the network in more than one cluster).
- Gipsy solution present in some points, some bias in east component at cm level that still under investigation (a mistake in the PCV correction?).
- Velocity estimation obtained by the three software (using a long time span) are in agree.

• But we have to consider that:

- Gamit and Bernese solution are obtained using the same approach (in all the aspects)
- Gipsy solution is obtained using a undifferenced approach and no correlation between station due to the network is present

For the future ...

Perform RDN network using Gipsy and Ambizap approach (for fix ambiguity) ...

STRUCTURAL, TRANSPORT, HYDRAULIC, Survey and territory engineering - Distart

Thank you !

Independent strategies for GPS data processing applied to the New Italian Geodetic Reference Network (RDN)

> • M. Barbarella, <u>S. Gandolfi</u>, L. Ricucci, A. Zanutta, DISTART – University of Bologna.

> > ITALY

stefano.gandolfi@unibo.it