

EUREF 2009 Symposium

Heights and scale variation in their inherent reference frames

C. Kotsakis

Department of Geodesy and Surveying School of Engineering Aristotle University of Thessaloniki, Greece

Instituto Geografico Militare, Firenze, Italy

May 26-29, 2009

Introduction

Realization of a vertical reference system (VRS) from geodetic data \rightarrow 2 degrees-of-freedom!

VRS "Origin" (zero-height reference level)VRS "Scale" (spatial reference scale for heights)

Specification of VRS datum parameters (& their temporal evolution) is a key issue for modern cm-level height systems in geodesy and Earth sciences, e.g. GGOS, IVRS, EVRS

(*) also important for the synergy of VRS with other spatial TRFs and/or space-geodetic techniques

Introduction (cont'd)

Realization of a vertical reference system (VRS) from geodetic data \rightarrow 2 degrees-of-freedom!

VRS "Origin" (zero-height reference level)VRS "Scale" (spatial reference scale for heights)

- Most research work has been performed on the definition and realization of the VRS "Origin"
- Extensive research work has also been performed for the connection of VRSs with different "origins"
- The "spatial scale" issue has <u>not</u> been really considered within modern VRS theory and practice !

What is a VRS ?

- In mathematical terms, a VRS corresponds to an 1D coordinate system (with possible time-dependency)
- In geodetic terms, a VRS is a framework for "height determination" that is embedded in the 3D Euclidean space and is associated with various 2D reference surfaces
- A modern VRS should be "tied" to both a physical (geopotential) and a geometrical Earth representation

What is a VRS ?

Primary VRS 'vertical coordinates'

 $c(P) = W_o - W(P)$ ------ Equivalent physical heights

that are complemented by 3D spatial position X(P), Y(P), Z(P)

and a gravity field "representation model"

e.g. C_{nm} , S_{nm} , $W(\cdot)$ or $T(\cdot)$

Not currently available in an **integrated way**...

VRS "Scale"

- Realized directly through all input data
- Affected also by modeling choices and other approximations (e.g. computation of mean [g] or mean [γ], choice of tidal system)
- Remains a vague concept No "standard method" for transforming VRS/VRF vertical positions and their velocities under a spatial scale change
- No special scale-considerations currently exist in VRS realization/usage with multi-source data! (compare with IERS approach for ITRS realization)

A simple example

h - H - N = 0 $\Delta h - \Delta H - \Delta N = 0$

Theoretical VRS constraints

the underlying height types (should) refer to an ideal and uniform spatial scale!

Η, ΔΗ

Spirit leveling, gravimetry & other modeling assumptions

h, ∆h

Space-geodetic techniques & appropriate TRFs

Ν, ΔΝ

GGMs, local gravity, DEMs, etc.

How critical are the inherent differences in spatial scale realization from the individual (absolute and/or relative) "height components" of a modern VRS ?

A simple example (cont'd)

h - H - N = 0 $\Delta h - \Delta H - \Delta N = 0$

Theoretical VRS constraints

The underlying height types (should) refer to an ideal and uniform spatial scale!

In practice, scale differences among the height types are handled through a constant correction-bias that is estimated over a test network of GPS BMs

Bias between what ?

"N" geoid vs. "h-H" geoid "h" earth vs. "H+N" earth "H" earth vs. "h-N" earth

Such an approach is not uniquely "interpretable" and we do not really know where this scalecorrection should be applied to

Levels of VRS "Scale"

- Spatial scale realized by (adjusted) geopotential numbers and their equivalent physical heights
- Spatial scale realized by VRS-linked geometric heights with respect to an underlying TRF + level ellipsoid
- ⇒ Spatial scale realized by a VRS-linked (or 'external') Earth geopotential representation $W(\cdot) \rightarrow geoid model$

Explore ways to validate the consistency among the previous scale levels e.g. over a network of GPS/lev BMs

Remarks...

 For a complete and rigorous study, it is required to model the effect in the VRS vertical coordinates (i.e. geopotential numbers) due to a joint perturbation of the VRS datum parameters "origin" + "scale"

Unsolved and rather complicated task...

- Instead, we look into the TRF spatial-scale variation and its corresponding effect on geometric heights and VRS physical heights
 - (*) Relevant since the geometric heights (and their underlying TRF) play a crucial role in VRS realization and the monitoring of temporal height changes within a vertical reference system

Note that...

Spatial distances

Geometric Heights

$$1 + \delta s = \frac{\Delta r}{\Delta r} = \frac{r}{r} = \frac{r'}{r'}$$

$$1 + \delta s \approx \frac{\Delta h}{\Delta h}$$
 $1 + \delta s \neq \frac{h}{h}$ $1 + \delta s \neq \frac{h'}{h'}$

Geometric heights & TRF scale

Existence of apparent vertical offsets due to the **implicit invariance** of the reference ellipsoid under TRF scale change

δs	awδs
10 ⁻⁶	~ 6.4 m
10 ⁻⁷	~ 64 cm
10 ⁻⁸	~ 6.4 cm
10 ⁻⁹	~ 6.4 mm

VRS & spatial-TRF synergy

□ A TRF scale variation of 1-2 ppb causes a latitudedependent offset of ~ 1 cm in geometric heights

In view of the "physical height realization" approach:

$$H = (h) - N \qquad \qquad \Delta H = (\Delta h) - \Delta N$$

how should we treat the VRS components *H* & *N* under a spatial-scale change **of the underlying TRF** ?

(*) It should be taken into account that a TRF scale change from an "old" frame to a "new" frame corresponds to a more precise realization of the Earth's **terrestrial-only** geometry

Different viewpoints...

'Math Physicist'

- Unequivocal position of abstract points
- Representation of W(·) should be 'adapted' to the particular scale of the spatial coordinate system (e.g. Kleusberg's formulae, GM re-scaling)
- Need for a reference metric scale

•
$$r = (1 + \delta s) r \rightarrow W(r) \stackrel{?}{\sim} W(r)$$

Systematic differences (~ of a few mm/yr) in geometric height velocities between TRFs with time-dependent spatial scale variation

VRS & spatial-TRF synergy

A TRF scale variation with rate 0.2 ppb/yr causes a latitude-dependent change of ~ 1-2 mm/yr in the geometric height velocities

In view of the "physical height monitoring" approach:

$$\dot{H} = \dot{h}$$

how should we treat the physical height velocities in a VRS under a spatial scale change **of its underlying TRF** ?

Summary

- Open problems exist in VRS theory and practice regarding the treatment of spatial scale issues !
- A cm-level VRS requires appropriate transformations & reductions to account for inherent differences in scale realization from its individual "height components"
- Relationship between VRS & TRS (conventions, parameters, realization, models) needs to be explored
 Not completed in the frame of IAG/ICP 1.2
- A modern VRS implementation in alignment with IERS/ITRS methodology and conventions requires a clear view for scale issues...

Thanks for your attention !

C. Kotsakis

⊠: kotsaki@topo.auth.gr

BUREF 2009 Symposium

May 26-29, 2009, Firenze, Italy