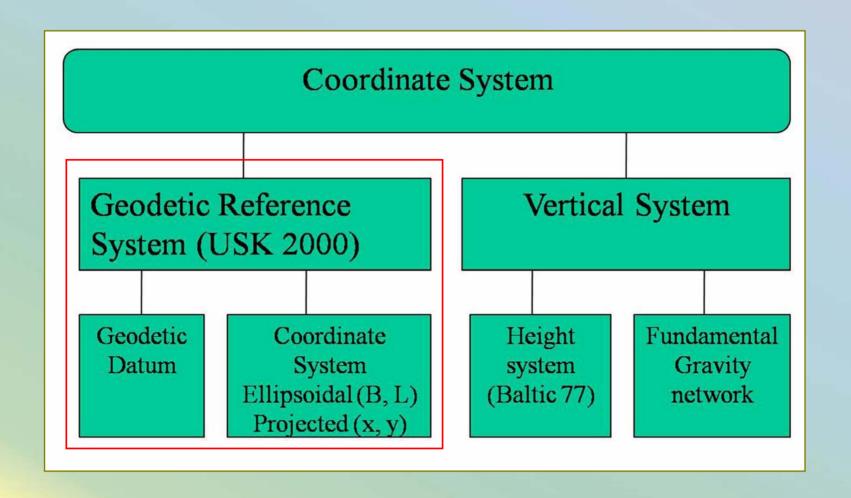
National report of Ukraine

- O. Kucher (1), A. Marchenko (3), O. Renkevich (1),
- S. Savchuk (3), I. Zaiats (2)
- 1) Research Institute of Geodesy and Cartography, Kyiv, Ukraine
- 2) State Service of Geodesy, Cartography and Cadastre, Kyiv, Ukraine
- 3) Institute of Geodesy, National University "Lviv Polytechnic", Lviv, Ukraine

EUREF2008 Symposium, June 2008, Brussels, Belgium


Introduction

The following activities during last years should be mentioned:

- development of the permanent GNSS network,
- initiation of the reference coordinate system USK-2000,
- new quasigeoid solutions,
- preparations to the readjustment of the State vertical network,
- common adjustment of GNSS observations and classic terrestrial data of the combined geodetic network consisting of 24562 points.

As a result, the Ukrainian part of the horizontal network of USSR is given now in USK-2000, ITRS and ETRS89 systems with accuracy on the level from 1 to 3 cm.

Reference system



Adopted criteria for USK-2000:

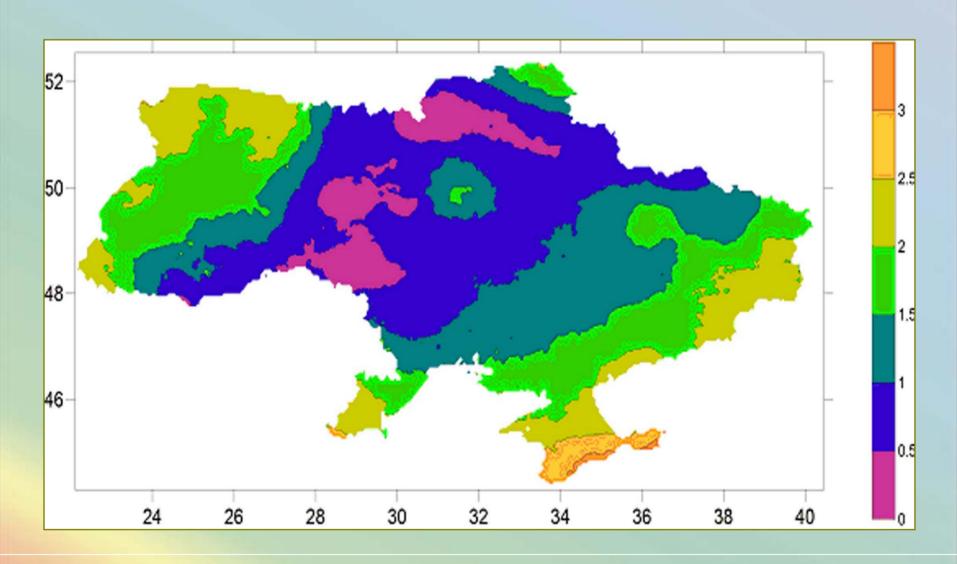
- 1) it is eccentric, the center of USK-2000 selected as the center of Krassowsky's ellipsoid is defined under the standard condition of minimal deviation between reference ellipsoid and quasigeoid in the Ukraine area;
- 2) its orientation is given initially by the orientation of ITRF2000 at epoch 2005.0 (scale is identical to the ITRF2000 scale at the same epoch);
- 3) its realization is based on the Ukrainian permanent network and preferred stations of the State network of 1st order via common adjustment of GNSS observations and classic terrestrial data;
- 4) USK-2000 should be close to the horizontal system S-42 (Pulkovo).

After practical realization of these requirements the new system keeps old maps of the scale 1:10000 or smaller given in the S-42 system. In addition the accurate connection between the reference system USK-2000 and the coordinate systems ITRS/ITRF2000 and ETRS89 was derived.

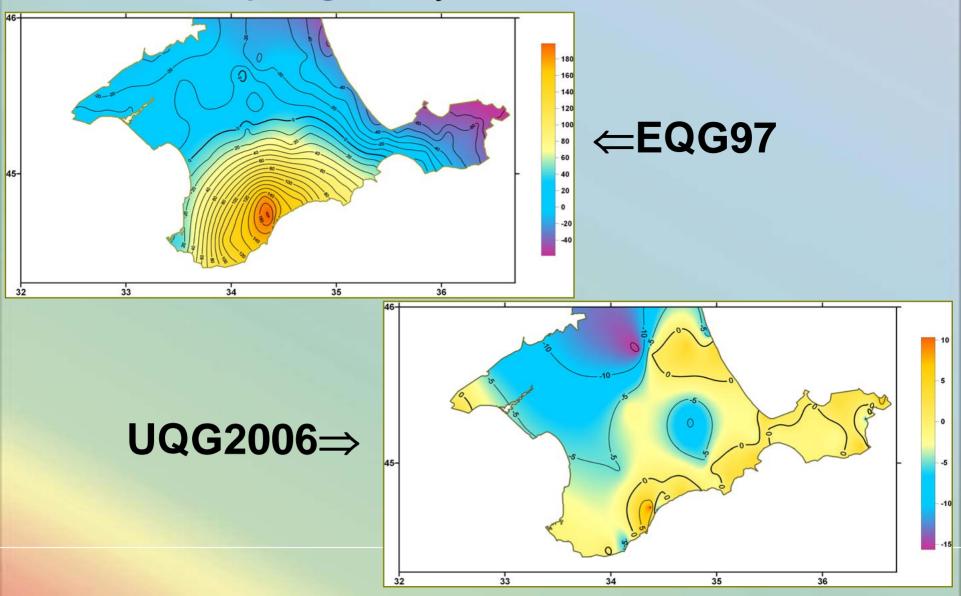
Ukrainian 3D geodetic network of the 1st order

Combining GNSS observations and classic terrestrial data was started in 2004-2005 from long-term GNSS measurements

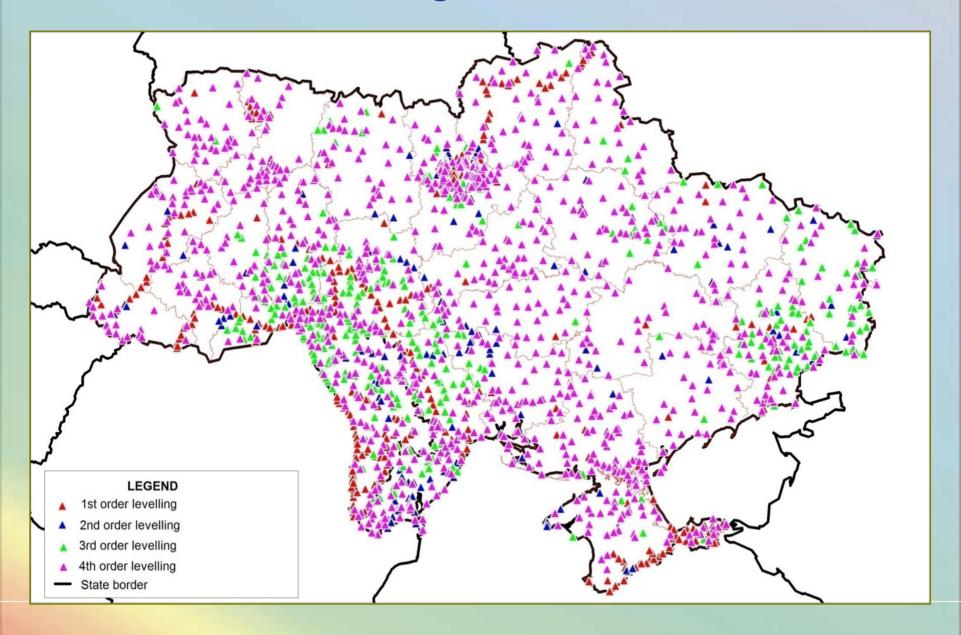
Accuracy estimation of the position of geodetic stations given in USK-2000


Statistics	Accuracy estimation (in m) of geodetic stations of different orders					
	1 st order,	2 nd order,	3 rd order,	4 th order,	Total: 24657	
	813 points	5586 points	10084 points	8174 points	points	
Min	0.001	0.001	0.001	0.003	0.001	
Max	0.026	0.112	0.099	0.143	0.143	
Mean	0.003	0.020	0.032	0.032	0.028	

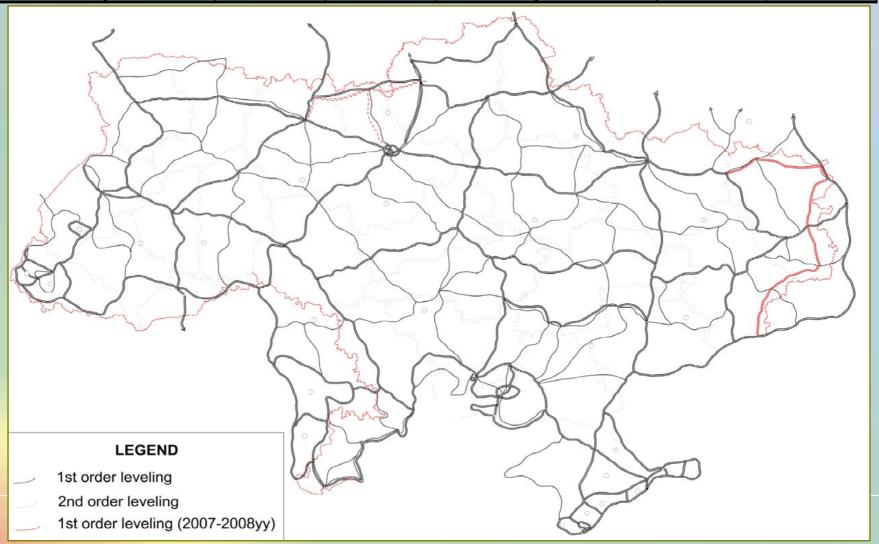
Range of accuracy	Number of stations					
	1 st order	2 nd order	3 rd order	4 th order	Total	
0 to 1 cm	803	316	841	7	1967	
1 to 2 cm	8	2738	622	658	4026	
2 to 3 cm	2	2219	3119	3074	8414	
3 to 4 cm	0	189	3143	2883	6215	
4 to 5 cm	0	80	1722	1256	3058	
5 to 6 cm	0	30	493	236	759	
6 to 10 cm 0		13	144	58	215	
More than 10 cm	0	1	0	2	3	


Differences of coordinates given in S-42 and USK-2000 systems

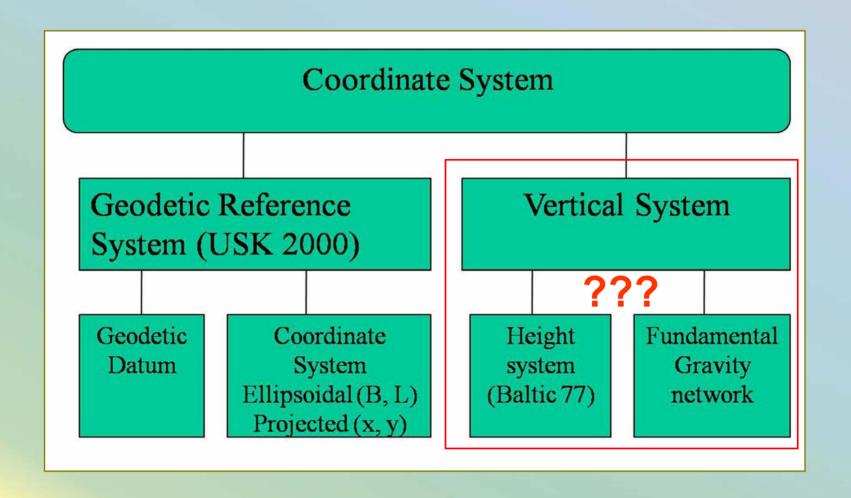
Range of coordinate differences (in m)	Number of stations	%	
0.0 - 0.5	1 292	5.26	
0.5 - 1.0	5 589	22.75	
1.0 – 1.5	5 808	23.65	
1.5 – 2.0	6 548	26.66	
2.0 - 2.5	4 438	18.07	
2.5 - 3.0	750	3.05	
>3.0	137	0.56	
Total:	24 562	100	


Distribution of coordinate differences (m) given in S-42 and USK-2000 systems

Differences (cm) between the measured normal heights H^{γ} and GPS-derived $H^{\gamma}=H-\zeta$ based on the gravimetric EGG97 and UQG2006 quasigeoids ζ in the Crimea area



Distribution of GPS-leveling data



Vertical networks of 1st and 2nd orders

Order	Number	Length of lines, km			Number of	Perime	ter, km
	of lines	Min	Max	Total	polygons	Min	Max
I	29	70.7	1301.9	11975.0	18	135.5	2234.9
II	62	37.5	383.9	11179.5	72	218.0	883

Reference system

Conclusions

- Common adjustment of GNSS observations and classic terrestrial data led to the construction of the State geodetic network consisting of 24562 points given in the USK-2000, ITRS and ETRS89 systems with accuracy from 1 to 3 cm.
- The USK-2000 reference system has accurate parameters of transformation with the ITRS and ETRS systems and their realizations.
- In view of accuracy the fist component or the horizontal system USK-2000 becomes homogeneous (in contrast to the S-42 system).
- The second component or completely geometrical Baltic 1977 system requires the readjustment via geopotential numbers to get a consistent gravity-related height system having a correct connection with EVRF.
- Redefinition of the Baltic 1977 system will lead to the recompilation of GPS/leveling data and new quasigeoid solutions associated with a reference level of a common gravity-related height system covering Europe.

Thank you for your attention!