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Introduction 
 
In classical error theory observations are regarded as realizations of random values which 

allow estimates of specified qualities to be derived. If the experiment is conducted under stable 
environmental parameters, without disturbances, the observations will be normally distributed and 
estimates of lowest possible variances could be obtained. Otherwise, efficient estimates cannot be 
computed, and besides the inherent random errors would appear also biases due to external 
systematic effects.  

The biases are usually regarded as deterministic values, modeled on the basis of specific 
theories, hypotheses, assumptions, etc. It is commonly accepted to perform geodetic surveys on 
particular occasions and with strictly defined purposes, as well as to introduce into the observation 
results corrections that would compensate the influence of the known systematic errors. 

When empirical data series of considerable length and spatial coverage are available, 
processes and events whose instant state is realized through the systematic errors come to the fore. 
That requires the use of more powerful analysis tools, and also enhancement of the traditional terms 
and methodologies. 

 
Sporadic and regular data 
 
Sporadic data results from singular observations designed without sufficient a priori 

information on the impact of external factors. Unlikely, regular data is a product of 
comprehensively designed observations realized considering the available external factor models 

( ),..., 21 EELL = . Ultimate regularity is achieved in case of continuous observations with period 

minT . Permanent geodetic networks, e.g. EPN, are typical examples for regular data sources (fig. 1). 
If the external factors are not properly considered at design time, and the observation 

repeatability is defined mechanically, regarding just the technical limitations ( σ,mintΔ ), resulting 
data would be of periodic but not regular nature.  

Errors of three types are distinguished within the classical error theory: gross errors, 
systematic errors and random errors. From practical standpoint that is completely reasonable, but 
not for analysis of regular data, when such definitions become inadequate. It is therefore necessary 
to introduce definitions as jump, trend, white noise, additive/multiplicative disturbances, etc., as 
well as to make clear the representativeness of the raw data samples with regard to time, i.e. instant 
data or averaged data over a particular interval [Minchev, 2007]. 

Not going into interpretation details, it is obvious that the North and East component graphs 
at fig. 1 clearly display a trend and jumps – on the events of transition from one reference frame to 
another or equipment upgrade. Unlikely, the height graph consists of a periodic component with 
amplitude of about 20 mm and wave length of 1 year apparent on the common noise background. 



 
Figure 1. ITRS time series as typical regular data: SOFI Euref Permanent Network station 

Courtesy EPN CB – Royal Observatory of Belgium 
 
 
Modeling external factors impact 
 
Observed data behavior is actually formed under the influence of multiple factors Ε∈iE , 

part of which )1( ri −=  identified both as phenomena and mechanism of impacting the 
measurements - 

( )rEEELL ,...,, 21= .        (1) 

If the values of those factors (e.g. atmosphere and ionosphere status, earth-crust dynamics, etc.) are 
defined during the observation session, their effect could be compensated by introducing relevant 
corrections. Otherwise, parameterization of each factor is necessary: 

( )iki2i1ii eeeEE ,...,,= ,       (2) 

followed by linearization and including into the mathematical model along with the initial 
parameter set x0. For instance, the first case (1) is typical when regarding the Earth rotation 
parameters impact, whereas the second one (2) is used when modeling the atmosphere refraction. 
The later may consist of diurnal and season cycles, trends and other features expressed by the 
parameters ije . Thus, the deterministic part of the model is set up. 

The rest of the external factors ( ije , i > r) is not reliably identified, or their manner of 
impacting the measured data is not completely studied. Therefore, their total effect is presented as a 



stochastic process x(t), resulting from overlapping of finite number of sine waves of various 
amplitudes (А), periods (T = 1/f ) and phases (φ): 

)π2sin()()(
1

ii

n

i
i fAtxtx ϕ++= ∑

=

, (3)

where )(tx  - mean section value at instant t. If the frequency ratio fi /fi+1 is a rational number for all 
i-s, then the base period T0 of x(t) obtains finite values and the process is periodic, else it is 
undefined and the process is specified as non-periodic. In the first case x(t) could be presented also 
as a harmonic process -  
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with a base frequency  f0 = 1/T0; ai, bi – Fourier coefficients [Minchev, 2003]. 
Based on the inequality 
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where Ti - period of the i-th component in (3), m – sampling index, indicative for the sampling rate 
achievable at observation periods T’, long-period and short-period components can be distinguished 
in the spectrum of x(t). According to the Nyquist criterion known from digital signal processing, a fi 
harmonic of the x(t) frequency domain displays systematic behaviour if fi ≤ 2f’, where f’ = 1/Т’– 
observation frequency, and is to be modeled in the deterministic part of the design, along with the 
other parameters: 
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where x0 – initial design parameters, xi , i = 1, 2,…, r – external parameters (1, 2) - 
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Hence the mathematical model equations are achieved 

'vlGsBx =++ , (8)

where xLB ∂∂= /  - design matrix corresponding to deterministic part  

vlBx =+ , (9)

sLG ∂∂= /  - design matrix corresponding to the stochastic parameters s, identified in (1) as short-

period components of x(t) , L'Ll 0 −= , L'  - observation vector, vL'L
~

+=  vector of estimates of 
the observed values L, Gsvv' −=  - unmodeled part (noise). Further, the solution follows the 
standard least squares procedure yielding new parameters whose meaning is to be further 
interpreted.   

With the collection of new knowledge and enhancement of the mathematical models used, 
the relative part of the undefined factor impact decreases, which leads to reduction of the random 
errors and their gradual turn into white noise. Hence could be identified new jumps, trends and 
other changes due to unknown factors of smaller amplitude, which leads to determination of a next 
part of the noise, and so on, until reaching the limitation of the period and accuracy of the available 
observations L' ),'( σT . 

In case of sporadic observations, signal cannot be reliably distinguished from noise because 
the external factors iE  could be displayed as either systematic or random errors, depending on the 
observation interval tΔ  and the apparent phases iEϕ .Therefore, systematic and random errors are 
attributed only to non-regular observations, and must always be related to the value of tΔ .  

 



Regular observation design 
 
For setting up an observation program are important the a priori information on the external 

factor iE  impact, and the technical limitations L’ ),( min σtΔ . For the successful sampling of the iE  

effect with period 
i

i
E

E f
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= , the condition LE ff i 2≤  must be fulfilled, where Lf  - observation 

frequency. Generally, the observation period is defined depending on the sampling rate: 

iEL t
m
kT Δ= , where mk 2≤  - integer numbers. 

If the iE  factor is stationary  ( constf iE = ) over a given time span [ ]21 , tt , the following 
equation is valid 

ii EEL tnTT Δ+= ,        (10) 

where for each n [ ]21, ttnT iE ∈ , 
m
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E =Δ . That practically allows identifying in observation 

series of given period impacts of factors of shorter periods (fig. 2).  
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Figure 2. Observations under stationary external factor iE  
 
 
In case the observation period is a multiple of an external factor, iEL kTT = , k – integer, the 

phase iEϕ  will be the same at all observation epochs, thus introducing the constant bias 

ii EEi fAEL )π2sin()( ϕ+=Δ  . If the phase is close to 90° or 270° (at fig. 3 °= 90iϕ ), it is possible 

LΔ  to reach significant values σβtL >Δ  , βt  – quantile of Student’s distribution at β  confidence 
probability. Thus the observations can be “cleared” from the iE  factor impact but the estimates will 
be biased. This effect could be of use for differential analysis and should be considered in the 
observation program design. Otherwise, results of unrealistic accuracy could be achieved.  
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Figure 3. Multiple observation and external factor periods 



Although two observation groups - ALL ,...)','( 21 , BLL ,...)','( 21 , are normally distributed, 
respectively ),( AA sLN , ),( BB sLN , and of equal accuracy -  BA ss ≈ , the results in the first case 
are apparently more optimistic only because they cover a relatively short time span where the 
unmodelled external effects remain practically unchanged, respectively AA ss ≈  , where As  - 
effective value of As  impacted by iE  (fig. 4). As AA stL β>Δ  , such estimate would be a 
misleading one. The broader interval in the second case, Bstβ , where BB ss > , allows for 
achievement of more realistic results, as well as to look for a simplified way for compensating the 
unmodelled effects, e.g. a suitable trend. Similar cases are typically met when analysing static GPS 
observations, where shorter series yield apparently “more accurate” results than the longer ones.   
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Figure 4. Observation session length effects 

 
 
Conclusion 
 
Analyses of sporadic and regular observations require different approaches. Classical error 

theory is applicable for sporadic data processing whilst regular data, including GNSS observations 
collected at permanent stations, should be treated using more common and powerful methods. 
Signal processing tools allow for modeling the external factors impact and separating the inherent 
instrumental errors. Thus classical error theory could be extended renovated.  
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